53. Struktur von Coleon A von D. Karanatsios¹) und C. H. Eugster (2. II, 65)

In einer früheren Mitteilung [1] beschrieben wir die Isolierung von Coleon A und Coleon B, zwei neuartigen Blattfarbstoffen aus *Coleus igniarius* SCHWEINF. (*Labiatae*). Coleon A wurde darin wie folgt charakterisiert: Summenformel $C_{20}H_{22}O_6$; ist ein substituiertes Naphtochinon vom Droseron-Typus, mit einer weiteren «freien» Hydroxylgruppe in einer Seitenkette und einem sechsten Sauerstoffatom, für das eine ätherartige Bindung vermutet wurde. An Alkylsubstituenten wurden 4 Methylgruppen, nämlich eine Isopropylgruppe, eine Methylgruppe an einem ungesättigten C-Atom und ein Methyl, das an einem vollsubstituierten C-Atom steht, festgestellt. Eine Seitenkette enthält eine Doppelbindung (Reaktionsprodukt der katalytischen Hydrierung: Dihydrocoleon A), die nach der katalytischen Reduktion im modifizierten KUHN-ROTH-Abbau [2] als Propionsäure nachgewiesen wurde. Wasserabspaltungsreaktionen an Coleon A, Dihydrocoleon A und Derivaten führten zu umgelagerten Produkten: Isocoleon A, $C_{20}H_{22}O_6$, und Dihydroanhydro-isocoleon A, $C_{20}H_{22}O_5$. Coleon A und Dihydrocoleon A sind optisch aktiv.

In der vorliegenden Arbeit legen wir die Beweise vor, die zur Aufstellung der Strukturformel I für Coleon A geführt haben (siehe Formelschema A).

1. Funktionelle Gruppen. – 1.1. Alkylsubstituenten: Der Naphtochinonkern im Coleon A ist voll substituiert. Das ergibt sich am eindeutigsten aus dem NMR.-Spektrum des Coleon A (siehe Fig. 1), das keine Signale von aromatischen Protonen aufweist. Die Lage der Methylsignale zeigt, dass das Dublett bei 1,28 ppm (J = 6-7 Hz) einer aromatisch oder chinoid gebundenen Isopropylgruppe zukommt, das Singlett bei 2,67 ppm einem ebenfalls aromatisch gebundenen Methyl zuzuschreiben

¹) Aus der geplanten Dissertation von Dimitrios Karanatsios.

Formelsckema A

ist, während die chemische Verschiebung des vierten Methylsignals (1,44 + 1,50 ppm)für eine aliphatisch gebundene Methylgruppe spricht, die offensichtlich an einem vollsubstituierten C-Atom sitzt. Die Doppelbindung in der Seitenkette kann also nur vinylisch, also endständig liegen. Dies wird durch Ozonabbau bewiesen: im Falle von Coleon A bildet sich Formaldehyd (gefasst als Formal-dimedon), im Dihydrocoleon A ist der Abbau negativ. Ebenso beweist das Auftreten von Propionsäure (neben Essigsäure und Buttersäuren) unter den flüchtigen Säuren des modifizierten KUHN-ROTH-Abbaus am Dihydrocoleon A das Vorliegen einer Vinylgruppe im Coleon A; denn letzteres gibt nur Essigsäure und Isobuttersäure. Dass es sich tatsächlich um eine Allylgruppe handelt, beweist das NMR.-Spektrum: im Fall von Coleon A erscheint bei 2,50 ppm das Dublett der –CH₂-Gruppe (J = 6,9-7 Hz), das zusätzlich Feinstruktur aufweist; zwischen 4,2 und 5,7 ppm absorbieren die Protonen der Vinylgruppe als Multiplett. Das Signal der Allylgruppe verschwindet bei der Hydrierung, dafür tritt neu eine Äthylgruppe mit einem allerdings sehr komplexen Signal auf (Multiplett, vermutlich A2 B2-Spinsystem). Auf weitere Signale des Coleon-A-NMR.-Spektrums wird weiter unten eingegangen.

Es ist hervorzuheben, dass wir bisher im IR. keine Hinweise für die Vinylgruppe im Coleon A haben finden können. Das Spektrum des Dihydrocoleons ist mit dem des Coleons A nahezu deckungsgleich. Auch sind die UV.-Spektren fast identisch. Die beiden Verbindungen besitzen auch denselben Schmelzpunkt und schmelzen im Gemisch ohne Depression. Präparative chromatographische Trennung eines Gemisches der beiden haben wir bisher mit keinem Lösungsmittelsystem erreichen können. Deutliche Unterschiede bestehen aber im Wasserstoffverbrauch bei der katalytischen Hydrierung (Dihydrocoleon A: 1 Mol., Coleon A: 2 Mol.), in der optischen Drehung und, wie erwähnt, im NMR.-Spektrum, sowie in mehreren chemischen Umsetzungen.

1.2. Die Sauerstoff-Funktionen: Neben den beiden Chinoncarbonylen enthält Coleon A drei Hydroxylgruppen. Davon ist eine (nur eine!) peri-ständig, was sich durch das typische Bild der IR.-Absorption der Chinoncarbonyle, durch den Farbtest mit Pyroboracetat nach DIMROTH [3], sowie durch ein scharfes Signal im NMR. bei tiefen Feldstärken (13,7 ppm) erkennen lässt. Unter hochauflösenden Bedingungen kann die OH-Streckschwingung dieser Gruppe im Bereich von 3-4 μ als sehr breiter und niedriger Buckel nachgewiesen werden. Dieses peri-OH tritt erwartungsgemäss bei milden Methylierungsreaktionen mit Diazomethan nicht in Reaktion. Es kann aber mit Pyridin/Acetanhydrid relativ leicht acetyliert werden.

Eine weitere phenolische Hydroxylgruppe ist ziemlich sauer ($pK_{MCS}^{*} = 6,6$). Sie bedingt die Löslichkeit von Coleon A in Soda aq. und NaOH aq. (bordeauxrote Lösung) und reagiert mit Diazomethan zum Methyläther. Damit ist ihre Stellung im Chinonteil nachgewiesen (vinyloge Säure). Im IR. erscheint sie [4] als relativ breite Bande bei 3,01 μ (CCl₄), sie ist also deutlich cheliert. Das ist typisch für Hydroxychinone; so fanden wir analoge Banden bei Royleanon (XX) 2,96, bei Dehydroroyleanon 2,97, Embelin 2,98, Phthiocol (XVIII) 2,93, Cordeauxiachinon (XXII) 2,93, Dihydrocoleon A (III) 2,78/3,00, Dihydroanhydro-isocoleon A (XIIIa) 3,00, Isocoleon A (XII) 2,76/3,00, Oxid Xa 2,77/3,00, Oxid Xb 3,05, Lacton VI 2,99 μ . – Die Bande bei 3,01 in Coleon A verschwindet bei der Methylierungsreaktion mit Diazomethan.

Fig. 2. Spektrum im UV. und Sichtbaren von Tri-O-acetyl-coleon A (V)

Die unter hohen Verdünnungen bei 2,78 μ (CCl₄) erscheinende «freie» Hydroxylgruppe gehört, wie unten gezeigt werden soll, einer Halbacetal-Gruppierung an. Bei Acetylierung treten alle drei OH-Gruppen im Coleon A in Reaktion. Das erhaltene zitronengelbe Tri-O-acetyl-coleon absorbiert etwa 80 nm kürzerwellig (λ_{max} 355 nm) (siehe Fig. 2) und zeigt nun bei 1667 cm⁻¹ eine ausgeprägte Chinonabsorption (Wegfall der intramolekularen H-Brücke zur *peri*-Hydroxylgruppe). Das Proton am Halbacetal (zwei Signale bei 5,75 und 5,91 ppm im Coleon A) wird durch die Acetylierung nach 6,36/6,48 ppm verschoben. Die drei Acetyle absorbieren bei 2,05, 2,32, 2,35 ppm. Im NMR.-Spektrum des Coleons A kann von den drei Hydroxylgruppen nur das *peri*-OH mit Sicherheit lokalisiert werden.

Die Halbacetalgruppe lässt sich mit den üblichen chemischen Nachweisreaktionen nicht erfassen; so wird Silberdiammin in der Kälte nicht reduziert. Erst bei tagelangem Stehen oder bei mehrstündigem Kochen tritt allmählich Ausscheidung von Silber auf. Die Verätherung mit Methanol-HCl an Coleon A führte bei normaler Aufarbeitung (Eingiessen der Reaktionsprodukte in wässerige Hydrogencarbonatlösung) nicht zu einem Vollacetal; es wurde unverändertes Coleon A zurückgewonnen. Hingegen waren Oxydationsversuche nach OPPENAUER (Cyclohexanon-Al-t-butylat-Toluol), mit Chromtrioxid in Eisessig oder Pyridin und vor allem mit MnO2 in Benzol sowohl an Coleon A als auch an Dihydrocoleon A erfolgreich. Für präparative Zwecke bewährte sich «saures» {MnO₂} nach HASLAM & QUIBELL [5] am besten. Es wurden dabei in etwa 50% Ausbeute die beiden kristallisierten Lactone VI und VII gewonnen²). Durch katalytische Hydrierung (Aufnahme von 2 Mol. H2) und Rückoxydation mittels {Ag₂O} lässt sich das Lacton VI in guter Ausbeute in VII überführen. Nach NMR. ist in VI die Allylgruppe unverändert enthalten (siehe Fig. 3). Neu ist das Auftreten eines Signales bei ca. 8 ppm in den beiden Lactonen, die dem sauren phenolischen OH zuzuschreiben ist. Beachtlich ist die Verschiebung des Signales der quaternären Methylgruppe in VI (1,67 ppm). Es ist jetzt, worauf wir noch zurückkommen werden, ein scharfes Singlett. Die beiden dem Halbacetal-H im Coleon A zugeschriebenen Signale bei 5,75 und 5,91 ppm sind im Lacton nicht mehr vorhanden. Beide Lactone sind in Kristallform ockergelb bis orange gefärbt, also deutlich heller als die Ausgangsmaterialien. In den Extrema ihrer UV.- und Sichtbar-Spektren (siehe Fig. 4) stimmen sie aber sowohl untereinander als auch mit denen von Coleon A und Dihydrocoleon A weitgehend überein. Somit hat sich bei den beschriebenen Oxydationen und Reduktionen keine Änderung des Chromophors ergeben. Signifikant verschieden von den Ausgangsmaterialien sind ihre IR.-Spektren: einmal fehlt die Bande der «freien» Hydroxylgruppe bei 2,78 μ , dafür tritt eine schmale und sehr intensive Bande bei 1820 cm⁻¹, an deren Zuordnung zu einem γ-Enollacton kein Zweifel bestehen kann (siehe Fig. 5).

Der Lactonring in VII ist nur schwer zu öffnen: erst bei sehr energischer Methylierung kann die charakteristische Lactonbande im IR. zum Verschwinden gebracht werden. Dem erhaltenen Produkt kommt nach Analysen und Spektren vermutlich die Struktur IX zu. Neu ist im IR.-Spektrum die Esterbande bei 1753 cm⁻¹.

Aus dem Dihydrolacton VII konnte auch erstmals ein kristallisiertes Leucoacetat (Tetra-O-acetylderivat VIII) gewonnen werden, das im UV.-Spektrum die typische naphtalinoide Absorption aufweist. (Aus Coleon A und Dihydrocoleon A konnten bisher keine kristallisierten Leucoacetate gewonnen werden.) Im Leucoacetat VIII ist die γ -Lactonbande (1808 cm⁻¹) unverändert vorhanden, der γ -Lactonring wird auch bei dieser Reduktion nicht angegriffen.

Recht glatt erfolgt die Reduktion des Coleon-A- γ -lactons (VI) mittels KBH₄ in Äthanol-Wasser. Es wurde nach der Aufarbeitung kristallisiertes Coleon A zurückge-

²) Kristallisiertes Dihydrolacton VII ist erstmals von Dr. H. KÜHNIS gewonnen worden.

wonnen, das sich in allen geprüften Eigenschaften (Smp., Misch-Smp., $[\alpha]_D$, UV.-, IR.- und NMR.-Spektren und Dünnschichtchromatogramm) als mit dem Ausgangsmaterial identisch erwies.

Damit ist ein eindeutiger Nachweis einer Halbacetalgruppe im Coleon A geleistet. Es stellt sich nun die Frage, ob im Coleon A eine Mutarotation im Sinne der Formeln Ia \gtrsim Ib nachgewiesen werden kann. Das war durch zeitliche Verfolgung der Drehung in verschiedenen Lösungsmitteln nicht der Fall. Allerdings sind genaue visuelle Messungen wegen der starken Eigenfarbe des Coleons A erschwert. Auch brauchen sich die beiden hypothetischen Epimeren in ihrer Drehung bei der D-Linie nicht stark zu unterscheiden. Trotzdem muss auf ein Gleichgewicht im Sinne von Ia \rightleftharpoons Ib geschlossen werden: einmal auf Grund des NMR.-Spektrums von Coleon A, in dem die quaternäre Methylgruppe in zwei ungleich grossen Signalen (1,44 und 1,50 ppm, Verhältnis ca. 1:0,3) absorbiert. Auch das Proton in der Halbacetalgruppe tritt sowohl im Coleon A, Dihydrocoleon A, Tri-O-acetyl-coleon und anderen einfachen Derivaten in zwei Signalen auf (Coleon A bei 5,75 und 5,91 ppm, Verhältnis ca. 1:0,3). Nach Oxydation der Halbacetalgruppe verschwindet der «Dublettcharakter» der quaternären Methylgruppe; sie erscheint, worauf bereits hingewiesen worden ist, als scharfes Singlett.

Ferner ist die Reduktion des Lactons VI zu einem Coleon A mit exakt gleicher Absorption in diesem Bereich (Verhältnis der Integrale bei 1,44:1,50 ppm = 1:0,3) am einfachsten mit dem Vorhandensein einer Mutarotation zu erklären. Vielleicht ist damit auch eine Erklärung gegeben, warum Derivate von Coleon A und Dihydrocoleon A kaum kristallin erhalten werden können. Sobald die Halbacetalgruppe entfernt ist, kristallisieren die Produkte im allgemeinen ausgezeichnet.

2. Relation Allylgruppe – Acetal (siehe Formelschema B). – Verschiedene Umsetzungen, die vor dem definitiven Nachweis der Allylgruppe durch NMR.-Spektroskopie durchgeführt worden waren, hatten zum Ziel, die durch Hydrierung nachgewiesene Doppelbindung in der Seitenkette chemisch zu erfassen. Persäuretitrationen nach PRILESCHAJEW zeigten, dass die Doppelbindung nur sehr langsam reagiert, so dass eine genaue Titration auf diesem Weg nicht möglich erschien. Bei präparativen Ansätzen, die mit einem grossen Überschuss an Perbenzoesäure oder Perphtalsäure ausgeführt werden, kann aber bei Reaktionszeiten von einigen Tagen neben unverändertem Coleon A eine neue, schwerlösliche und höher schmelzende Verbindung $C_{20}H_{22}O_7$ (Xa) isoliert werden, die ein Sauerstoffatom mehr als das Ausgangsmaterial

enthält. Rascher gelingen solche Oxydationen in Eisessiglösung mit 30-40-proz. wässeriger Peressigsäure. Das aus solchen Ansätzen erhaltene Produkt besteht aus wechselnden Mengen an unverändertem Coleon A und wenig desselben Oxides Xa,

das mit Perphtalsäure direkt erhalten wird, und einem neuen Hauptprodukt, C₂₂H₂₄O₈, prachtvoll in orangefarbigen Blättchen kristallisierend, der Struktur Xb, das sich durch Verseifen in das Oxid Xa überführen lässt. Im UV.-Spektrum unterscheiden sich die beiden Oxide kaum von Coleon A; die Reaktion hat demnach ausserhalb des Chromophores stattgefunden. Hingegen zeigt das IR.-Spektrum deutlich. dass die halbacetalische Hydroxylgruppe bei 2,78 μ verschwunden ist und demnach an der Reaktion teilgenommen hat. Ein Epoxid hat sich bei dieser Reaktion nicht gebildet. Die beiden neuen Oxide sind sehr stabil. Ihre NMR.-Spektren zeigen, dass die Allylgruppe verschwunden ist; das Acetalproton absorbiert bei ca. 6 ppm, ist also gegenüber dem von Coleon A kaum verschoben. Verschiedene Signale erscheinen jedoch doppelt, somit liegt wahrscheinlich eine Mischung der beiden Diastereomeren (Partialformel Xc) vor (nur je eine Antipode gezeichnet), deren Trennung wir nicht versucht haben. NMR.-Daten für das Bis-furanidin-System sind im Zusammenhang mit den Arbeiten an Clerodin [6], Sterigmatocystin [7] und den Aflatoxinen [8] publiziert worden. Insbesonders ist die Lage des Acetalprotons bei ca. 6 ppm signifikant, das in X wegen der angulären Methylgruppe als Singlett auftritt. Wir selbst haben dieses System kürzlich im Rahmen unserer Arbeiten über Kondensationsreaktionen zwischen Furanen und Acylchinonen synthetisch dargestellt [9].

Die dabei ebenfalls festgestellte spektrale Übereinstimmung lässt keinen Zweifel an der getroffenen Strukturzuordnung offen. In Übereinstimmung mit der Formel X stehen auch die folgenden *chemischen* Befunde: milde katalytische Reduktion an Xa oder Xb führt nur zur Reduktion des Chinonringes; Dihydrocoleon A lässt sich mit Persäure nicht zu einem analogen Oxid oxydieren; Oxydation mit MnO_2 lässt Xa im wesentlichen unverändert; Leuco-acetylierung an Xb führt zum kristallisierten, optisch aktiven Leucopentaacetat XI, das eine analoge UV.-Absorption wie das Leucotetraacetat VIII aufweist.

Der in der vorausgehenden Publikation [1] erwähnte Abbau von Coleon A mittels Hypojodit zu Jodoform dürfte auf einer ähnlichen Reaktionsfolge wie die Bildung der Oxide X aus Coleon A beruhen, wobei eine Jodmethylgruppe als Zwischenprodukt anzunehmen ist.

3. WAGNER-MEERWEIN-Umlagerungen (siehe Formelschema C). – In der vorangehenden Publikation [1] wurden das aus Coleon A durch Schwefelsäurebehandlung erhältliche isomere Isocoleon A, sowie das analog aus Dihydrocoleon A gewonnene Dihydroanhydro-isocoleon A (dort «Anhydrodihydrocoleon A» genannt) und dessen Monomethyläther beschrieben. Es wird im folgenden bewiesen, dass dem Isocoleon A Struktur XII und dem Dihydroanhydro-isocoleon A Struktur XIIIa zukommen. Somit hat sich die damals geäusserte Vermutung, dass die Reaktionen mit einer Umlagerung verbunden sind, bestätigt, nicht aber die Annahme, dass dabei die *peri*ständige Hydroxylgruppe unter Ringschlussreaktion beteiligt sei. Der dieser Annahme zugrundeliegende Befund war der negative Ausfall der Pyroboracetat-Reaktion bei Isocoleon A und Dihydroanhydro-isocoleon A. Erneute Versuche mit einem verdünnteren Reagens ergaben nun eine positive, wenn auch sehr unbeständige Farbreaktion (vgl. exper. Teil). Die NMR.-Spektren von XII und XIII zeigen einwandfrei, dass die *peri*-ständige Hydroxylgruppe noch vorhanden ist.

Als besonders wertvoll zur Erkennung der Zusammenhänge, sowie für Abbaureaktionen erwies sich das jetzt neu gefundene Anhydro-isocoleon A (XIV). Erste Hin-

weise für seine Bildung fanden wir bei NMR.-Aufnahmen von Coleon A in Trifluoressigsäure als Lösungsmittel, wo beim Stehenlassen eine typische Veränderung im Spektrum festgestellt wurde, sowie bei Säurebehandlungen an Tri-O-acetyl-coleon A (V). Präparativ besonders ergiebig ist die Umsetzung von Coleon A mit einem Äther-Schwefelsäure-Gemisch. Anhydro-isocoleon A ist wie XII und XIII tiefrot gefärbt und hochschmelzend (Smp. 197,5–198°). Alle drei neuen Isocoleon-Derivate besitzen dasselbe C-Gerüst, wie sich besonders klar aus den Überführungen von Anhydroisocoleon A in Isocoleon A durch MARKOWNIKOW-Hydratisierung der Doppelbindung

Fig. 6. Spektren im UV. und Sichtbaren von Isocoleon A (XII), Anhydro-isocoleon A (XIVa) und Verbindung XXIV

der Allylseitenkette, sowie in Dihydroanhydro-isocoleon A durch Hydrierung der Doppelbindung ergeben. Alle drei Verbindungen sowie ihre Derivate sind nach sorgfältiger Reinigung optisch inaktiv³). Sie weisen untereinander sehr ähnliche UV.-Spektren auf, die gegenüber denen der Coleon-A-Reihe aber deutlich verschieden sind (siehe Fig. 6). Die Rotverschiebung ist auf den ankondensierten Furanring zurückzuführen.

Signifikant sind die NMR.-Spektren (vgl. Fig. 7): in allen Verbindungen der Iso-Reihe ist das Signal der quaternären Methylgruppe verschwunden und an seiner Stelle ist ein neues Signal zu sehen (2,34 ppm in XIVa und XIIIa; 2,32 ppm in XII). In XIV ist zudem die Signalgruppe des Allylsubstituenten noch erhalten (5,15–6,15 ppm), während sie in XII fehlt. Im NMR.-Spektrum von Isocoleon A überlappen die Signale der Isopropylgruppe mit denen der neuen Methylgruppe. Das Dublett der Methyl-

gruppe $\begin{pmatrix} H \\ CH_3-C \\ - \end{pmatrix}$ kann aber mit Pyridin als Lösungsmittel wenigstens teilweise erkannt werden. Das Multiplett bei 4,16–4,40 ppm, das dem –CH– zuzuschreiben ist, OH

lässt sich nach Acetylierung nach tieferen Feldstärken verschieben. In allen drei Verbindungen ist das Signal der sauren phenolischen Hydroxylgruppe um 8 ppm klar ersichtlich.

Fig. 7. NMR.-Spektrum von Anhydro-isocoleon A (XIVa)

Aus den im Abschnitt 3 vorgelegten Tatsachen ergibt sich, dass bei der Säurebehandlung von Coleon A bzw. Dihydrocoleon A eine WAGNER-MEERWEIN-Umlagerung eingetreten ist. Sie wird durch Protonierung der acetalischen Hydroxylgruppe eingeleitet, worauf nach ihrer Abspaltung (eventuell synchron mit der Abspaltung) eine 1,2-Wanderung eines Alkylsubstituenten folgt. Die MARKOWNIKOW-Hydratisierung der Allylseitenkette zum Isocoleon A ist dann als sekundärer Prozess zu verstehen. Sie hängt u.a. von der Acidität der verwendeten Säure ab. Durch Verwendung einer

³) Die für Dihydroanhydro-isocoleon A in [1] mitangegebene geringe Drehung beruht offensichtlich auf einem Messfehler.

schwächeren Säure (Trifluoressigsäure), bzw. Abpufferung der Schwefelsäure durch den als Lösungsmittel verwendeten Äther, wird die Hydratisierung vermieden; es tritt nur Umlagerung in die Iso-Reihe ein.

Es kann aus den geschilderten Versuchen aber nicht mit Sicherheit entschieden werden, ob die Allyl- bzw. die Propyl-Gruppe oder aber jeweils die Methylgruppe gewandert ist. Jedenfalls ist im Falle einer Wanderung der Allylgruppe nie Inversion aufgetreten. Aus vielen Literaturdaten kann entnommen werden, dass Allylgruppen und auch Propylgruppen eine höhere Wanderungstendenz besitzen als Methylgruppen. Trotzdem haben wir es für ratsam gehalten, die *a priori* wahrscheinlichere Allylwanderung durch chemische Experimente zu verifizieren. Dies ist der Sinn der im Abschnitt 5 präsentierten Versuche. Sie beweisen die in den Formeln XII, XIII und XIV zum Ausdruck gebrachte Allylwanderung. Wie aber im Abschnitt 7 gezeigt werden wird, gibt es auch Reaktionsbedingungen, unter denen die Methylgruppe bevorzugt wandert.

4. Oxydativer Abbau am Chinonring (siehe Formelschema C). – Den bisherigen Versuchen ist zu entnehmen, dass der Chinonring eine Hydroxylgruppe als Substi tuenten tragen muss, doch kann noch nicht mit Sicherheit entschieden werden, ob sich die *Methyl-* oder die *Isopropyl-Gruppe* am Chinonring befinden. Zwar sprechen Vergleichsmessungen an *Plumbagin* (XVII)⁴), *Phthiocol* (XVIII) und dessen *Leucoacetat*, sowie an *Ventilagon* (XIX) [10] und *Royleanon* (XX)⁵) dafür, dass im Coleon die Methylgruppe aromatisch und die Isopropylgruppe am Chinonring gebunden sind, doch mahnten der positive Jodoformtest und die Tatsache, dass bisher erst wenige *natürliche Chinone mit einem isopropyl-substituierten Chinonring* gefunden worden sind, zur Vorsicht.

Zur eindeutigen chemischen Festlegung der relativen Verteilung der Substituenten auf den chinoiden bzw. benzenoiden Teil der Molekel haben wir sehr zahlreiche Oxydationsversuche an Coleon A und verschiedenen Derivaten ausgeführt, die aber nur am Anhydro-isocoleon A (XIV) und Dihydroanhydro-isocoleon A (XIII) zu übersichtlichen und einfach zu interpretierenden Daten geführt haben: Beim Abbau von XIV mit H₂O₂/KOH in Methanol konnte ein Säuregemisch erhalten werden, das durch sorgfältige Chromatographie nach dem im Versuchsteil beschriebenen Verfahren ein substituiertes Phtalsäureanhydrid C15H12O5 vom Smp. 143,5-144° lieferte. Seine Spektren sind für ein substituiertes Phtalsäureanhydrid charakteristisch: im UV. (siehe Fig. 8) treten Hauptmaxima bei 250/343/357 nm auf; im IR. findet man die Banden der Anhydrid-Gruppierung bei 1821/1750 cm⁻¹, die phenolische Hydroxylgruppe ist schwach cheliert (Bande bei 2,88 μ , CCl₄)⁶). Das NMR.-Spektrum beweist, (siehe Fig. 9), dass 1. die Isopropylgruppe verschwunden ist; 2. die aromatische Methylgruppe sowie die Allyl- und Methyl-Substituenten am Furanring noch vorhanden sind; 3. das ursprüngliche, scharfe Signal der peri-OH-Gruppe bei 13,9 ppm durch ein schwaches Signal bei 6,75 ppm ersetzt ist.

Daraus folgt eindeutig, dass der Chinonring aufoxydiert worden und mitsamt der Isopropylgruppe verlorengegangen ist. Für das Anhydrid ergeben sich somit noch

⁴⁾ Isoliert durch C.H.E. aus der Rinde von Diospyros xanthochlamys.

⁵) Wir danken Herrn Dr. O. E. EDWARDS, Ottawa, auch hier für die freundliche Überlassung einer Probe von Royleanon, sowie eines NMR.-Spektrums.

⁶) Gemessen nach der Technik von EUGSTER & ALLNER [11] in 50-mm-Zellen mit Saphirfensteru.

12 Formulierungsmöglichkeiten, von denen, wie nachstehend gezeigt werden soll, Formel XV zutrifft.

Durch katalytische Hydrierung der Doppelbindung der Allylgruppe konnte das Anhydrid zu XVI reduziert werden: Weisse Nadeln mit Smp. 145,5–146°. Die UV.und IR.-Spektren sind denen von XV nahezu gleich (siehe Fig. 10), im NMR. ist aber

Fig. 8. UV.-Spektrum vom Anhydrid XV

Fig. 10. UV.-Spektrum vom Anhydrid XVI

die Signalgruppe der Allylprotonen durch die einer Propylgruppe ersetzt worden. Zum gleichen Abbauprodukt führte darauf derselbe oxydative Abbau am Dihydroanhydro-isocoleon A (XIII), wodurch erneut die Identität der C-Gerüste der Iso-Reihe bewiesen ist.

5. Beweis für die Allylwanderung bei der WAGNER-MEERWEIN-Umlagerung (siehe Formelschema D). – Zum sicheren Entscheid, dass die Substanzen der Iso-Reihe durch säurekatalysierte Wanderung der Allylgruppe entstehen, prüften wir die oxydative Öffnung des Benzofuransystems am Furanring. Verschiedene Versuche ergaben, dass dazu die Ozonisation am Diacetat XIIIc durch Ozonisation nach der

Technik von WACEK [12] und SPÄTH [13] am geeignetsten war. Unter den im experimentellen Teil genannten Bedingungen konnte in Essigester als Lösungsmittel in reproduzierbaren Ausbeuten von 50–60% das Acetylnaphtochinon XXI erhalten werden. Es besitzt die Zusammensetzung $C_{16}H_{16}O_6$ und kristallisiert in prachtvollen roten Nadeln vom Smp. 207–208°. Sein UV.-Spektrum hat noch grosse Ähnlichkeit mit dem von Coleon A (Fig. 11).

Fig. 11. Spektrum im UV. und Sichtbaren des Acetylnaphtochinons XXI

Aufschlussreicher sind die IR.- und NMR.-Spektren: Im IR. fallen vor allem eine neue Carbonylgruppe bei 1706 cm⁻¹, sowie 2 Hydroxylgruppen bei 2,84/3,01 μ^{6}) auf. Auf die kurzwellige Carbonylfrequenz von hochsubstituierten Acylchinonen haben wir in anderem Zusammenhang verschiedentlich hingewiesen [14]. Das NMR.-Spektrum gibt unter anderen die folgenden Signale: 4 Methylgruppen, wovon 2 der Isopropylgruppe angehören und die beiden anderen (bei 2,47 und 2,53 ppm) einer Acetylgruppe und einer aromatischen Methylgruppe zugeordnet werden müssen. Diazomethan veräthert 2 phenolische OH-Gruppen (Dimethyläther, Smp. ca. 60°; das Signal der *peri*-OH bleibt bei 13,3 ppm), während die übliche Acetylierung ein gelbes, kristallines Tri-O-acetylderivat (Smp. 146,5–147°) gibt (vgl. Fig. 12).

Mit diesen Daten ist bewiesen, dass im Abbauchinon ein Acetylchinon vorliegt und dass bei der Ozonisation Buttersäure abgespalten worden ist. Somit ist chemisch

sichergestellt, dass in den WAGNER-MEERWEIN-Umlagerungen zur Iso-Reihe die Allylgruppe exclusiv gewandert ist. Damit reduzieren sich die früher erwähnten Formulierungsmöglichkeiten für das Abbauanhydrid XV von 12 auf 6, und weiter auf 4, wenn ferner berücksichtigt wird, dass für Coleon A eine peri-ständige Hydroxylgruppe zum Chinonsystem nachgewiesen ist. Zwischen den verbleibenden Isomeren kann eindeutig entschieden werden, sobald ein Beweis für die ortho-Stellung der Sauerstoff-Funktionen am aromatischen Kern gegeben werden kann.

Für das Acetylchinon XXI sind, da die relative Stellung der Substituenten am Chinonring noch unbestimmt ist, bei parachinoider Formulierung noch 10 Isomere möglich. Davon scheiden 4 aus, wenn man berücksichtigt, dass ein *peri-*OH bewiesen ist, dass ein Naphtazarinderivat aus spektralen Gründen und auf Grund von Farbreaktionen ausgeschlossen werden kann. Zwischen den verbleibenden Möglichkeiten kann entschieden werden, sobald auch hier der Nachweis zweier ortho-ständiger Hydroxylgruppen im benzenoiden Teil gesichert ist. Es bleibt dann nur das Problem der relativen Stellung der Chinonsubstituenten zu lösen. Es wird im folgenden Abschnitt gezeigt, dass dem Abbauchinon tatsächlich die Struktur XXI zukommt.

In diesem Zusammenhang sei an die verwandte Struktur von Cordeauxiachinon, einem von uns [15] früher aus Blättern von Cordeauxia edulis isolierten Pigment erinnert, für das von NIGGLI & FEHLMANN kürzlich [16] durch RÖNTGEN-Analyse die endgültige Verteilung der Substituenten im Sinne von XXII (+ Tautomere) entschieden werden konnte. Es ist vielleicht nicht unnötig, darauf hinzuweisen, dass Cordeauxiachinon sich als Naphtazarinderivat in spektraler Hinsicht vom Abbauchinon XXI genügend deutlich unterscheidet.

6. Beweis für zwei ortho-ständige Sauerstoff-Funktionen im benzenoiden Ring des Coleons A (vgl. Formelschema E). – Die im vorangehenden Abschnitt aufgeworfene Frage nach der relativen Stellung der O-Funktionen im benzenoiden Ring haben wir auf verschiedenen Wegen zu lösen versucht. Davon seien erwähnt:

a) Coleon-A- γ -lacton (VI) löst sich in 10-proz. NaOH aq. mit *roter* Farbe. Wird aber der durch Methylierung mit CH₂N₂ gebildete Monomethyläther mit Lauge behandelt, so bildet sich eine *tief kornblumenblaue* Lösung. Es ist bekannt, dass Hydroxy-

naphtochinone in wässeriger Lösung nur dann blaue oder violette Phenolate geben, wenn sie zwei *peri-* oder zwei *ortho*-ständige Hydroxylgruppen enthalten. Offenbar tritt diese Farbreaktion nur ein, wenn die stärkst saure OH-Gruppe im Chinonring verschlossen ist. Beim Abbauchinon XXI konnte der Farbtest nicht durchgeführt werden, da mit Diazomethan *zwei* Hydroxylgruppen veräthert wurden. Ein analoges Phänomen kann an den Oxiden Xa und Xb, sowie am Isocoleon-A-monomethyläther beobachtet werden. Sie lösen sich in 1N NaOH mit bordeauxroter Farbe. Wird aber vorher mit Diazomethan methyliert, so tritt jetzt Lösung in 1N NaOH mit *violett*-roter Farbe ein.

b) Phosgenierung in Pyridin/Toluol ergaben an Coleon A und Abbauchinon XXI gelbe Reaktionsprodukte mit intensiver IR.-Absorption um 1800 cm⁻¹ (cycl. Fünfring-Carbonat).

c) Die eindeutigsten Resultate lieferte der alkalische Permanganatabbau der Trimethyläther XXIc und XXV. Die Darstellung des ersteren ist im experimentellen Teil beschrieben, die des letzteren bedarf eines Kommentares: Beim Umsatz von Coleon-A- γ -lacton mit konz. H₂SO₄ unter den Bedingungen, wie sie zur Darstellung der Iso-Reihe benutzt wurden, tritt beim Lacton nur Hydratisierung der Doppelbindung in der Seitenkette ein. Der Rest der Molekel bleibt unverändert, wie die zum Ausgangsprodukt nahezu identischen UV.-Spektren beweisen. Die in prachtvoll goldgelben Blättchen kristallisierende Verbindung XXIII analysiert zu C₂₀H₂₂O₇ und weist die intakte γ -Lactongruppe auf (1825 cm⁻¹). Im NMR. ist an Stelle der Signal-

Gruppe, analog wie beim Isocoleon A (XII), getreten. Bei dieser Reaktion können sich zwei Stereoisomere bilden. Vielleicht ist unser Reaktionsprodukt nicht ganz einheitlich, worauf z. B. die NMR.-Spektren deuten, die ähnlich wie bei den Oxiden X doppelte Signale für die quaternäre und die aromatische Methylgruppe aufweisen (Verhältnis der Signale 1,57:1,62 = ca. 1:0,3). Wird XXIII unter milden Bedingungen mit Diazomethan in Äther umgesetzt, so entsteht ein Dimethyläther $C_{22}H_{26}O_7$ der Struktur XXIV (orangerote Kristalle, Smp. 136° ⁷). Signifikant ist das unveränderte *peri*-OH und der Ersatz der 1825 cm⁻¹-Bande durch eine solche bei 1754 cm⁻¹. Zwei Hydroxylgruppen sind methyliert. Es hat demnach Umlactonisierung stattgefunden. Wie sich diese Reaktion abspielt, ist nicht näher untersucht worden. Beide Lactone XXIII und XXIV sind optisch aktiv (siehe Tabelle 1).

Verbindung	$[\alpha]_{\mathrm{D}}^{\circ}$	t °C	Lösungsmittel	Konzentration g/100 ml LM.
I	+100/+80	22	Äthanol/Chlorof.	0,15/0,18%
III	+14/+30/+57	23	Äthanol/Chlorof./Benzol	0,19/0,20/0,18%
VI	+ 144	26	Äthanol	0,53%
VII	+75	25	Äthanol	0,50%
Xa	+100	26,5	Chlorof.	0,13%
Xb	+105	23,5	Chlorof.	0,175%
XXIII	+80	22	Alkohol	0,38%
XXIV	+115	25	Chlorof.	0,15%

Tabelle 1. Optische Drehungen

Die ungewöhnliche leicht und glattverlaufende Öffnung des Lactonringes in XXIII kontrastiert mit der hohen Stabilität der γ -Enollactone VI und VII. Es dürfte sich bei XXIII um eine durch intramolekulare nucleophile Addition erleichterte Reaktion handeln.

Durch energische Methylierung lässt sich auch das *peri*-OH veräthern. Den erhaltenen Trimethyläther XXV haben wir zu Abbaureaktionen eingesetzt. Er erwies sich dazu als geeigneter als der Trimethyläther XXIc. Der energische alkalische Permanganatabbau ergab eine *Dimethoxybenzol-tetracarbonsäure* mit Smp. ca. 210° (Zers.). Von den 3 möglichen Isomeren (Dimethoxymellophansäure, Dimethoxypyromellithsäure, Dimethoxyprehnitsäure) sind unseres Wissens nur die beiden letzteren bekannt [17]. Die Nichtidentität unserer Abbausäure mit den beiden letztgenannten Säuren ergibt sich aus den Schmelzpunkten, sowie aus den Spektren: Der aus unserer

7) UV.-Spektrum, siehe Fig. 6.

Abbausäure durch Diazomethan erhaltene Tetramethylester zeigte im NMR. drei scharfe Singlette bei 3,84/3,90/3,93 ppm (in CDCl₃) mit dem Integral-Verhältnis von 1:1:1. Die Signale sind völlig symmetrisch und bleiben es auch bei hoher Auflösung.

Fig. 13. UV.-Spektrum des Dianhydrids XXVIII

Mit dieser Absorption ist nur die Struktur eines Dimethoxymellophansäure-tetramethylesters (XXVII: 1,2-Dimethoxybenzol-3,4,5,6-tetracarbonsäure-tetramethylester) zu vereinbaren, der 3 Paare verschiedener Methoxygruppen enthält. Von den beiden anderen isomeren Tetramethylestern würde man 2 Signale im Verhältnis 2:1 bzw. 4 Signale im Verhältnis 2:2:1:1⁸) erwarten. Das UV.-Spektrum der Abbausäure XXVI in konz. H_2SO_4 hat Maxima bei 250 und 350 nm. Es absorbiert also wesentlich kürzerwellig als die bekannte Dimethoxypyromellitsäure in konz. Schwefelsäure (262 und 425 nm). Schliesslich ist die Bildung des kristallisierten Dianhydrids XXVIII (UV.-Spektrum, vgl. Fig. 13) vom Smp. 209–212° bedeutsam. (Dimethoxypyromellitsäure-dianhydrid hat Smp. 288–291°.) Mit der Dianhydridbildung scheidet eine Dimethoxyprehnitsäure endgültig aus; zur Dimethoxypyromellitsäure ist zudem zu bemerken, dass sie eine Naphtazarin- oder Naphtazarinmonoäther-Gruppierung in Coleon A und Derivaten bedingen würde, wofür wir nie irgendwelche Hinweise erhalten haben.

Dieselbe Tetracarbonsäure XXVI haben wir auch beim Permanganatabbau am Trimethyläther XXIc nachgewiesen. Den zum Abbau voraussichtlich ebenfalls geeigneten Trimethyläther IX haben wir nicht mehr eingesetzt.

Mit den im Abschnitt 6 beschriebenen Reaktionen reduzieren sich die Formulierungsmöglichkeiten für Coleon A und Derivate auf je 2, d.h. es ist jetzt nur noch die relative Stellung der Hydroxyl- und Isopropyl-Gruppe am Chinonring offen. Die Lösung dieses Problems auf chemischem Wege ist im folgenden Abschnitt angegeben.

7. Beweis für das Substituentenverhältnis im Chinonring von Coleon A und Derivaten (vgl. Formelschema F). – Diese *a priori* nicht einfach erscheinende Aufgabe – sie ist in den meisten verwandten Fällen ungelöst geblieben – liess sich auf folgende Art und Weise zweifelsfrei lösen: COOKE & SOMERS haben vor einiger Zeit gezeigt [18], dass 2-Hydroxy-3-alkyl-1,4-naphtochinone mit Alkali in Indenoncarbon-

⁸⁾ Unter der Voraussetzung, dass nicht einzelne Signale zufällig die gleiche chemische Verschiebung aufweisen.

säuren übergeführt werden können, wobei das hydroxylierte C-Atom des Chinonringes im Endprodukt als Carboxyl auftritt, z.B. aus 2-Hydroxy-3-isopropyl-1,4naphtochinon die Indenoncarbonsäure XXIX. Die Reaktion gelingt besonders glatt

mit Isopropyl-, t-Butyl- oder Cyclohexyl-Substituenten. Falls diese Umlagerung am Coleon A oder einem seiner abgeleiteten Chinone ebenfalls gelingt – analoge Reaktion an Chinonen mit *peri*-ständiger OH-Gruppe sind jedoch unseres Wissens noch nicht durchgeführt worden – so müsste im einen Fall eine Indenoncarbonsäure mit *peri*-ständiger OH-Gruppe (I \rightarrow XXXI), im anderen Fall eine mit *peri*-ständiger Methyl-

gruppe (XXXII \rightarrow XXXIII) entstehen, die sich durch die Lage der Hydroxyl- und Carbonyl-Gruppe im Infrarot unterscheiden lassen sollten.

Unsere Erwartungen trafen zu, allerdings trat zusätzlich eine Reaktion an der Halbacetal-Gruppierung ein. Bei der Behandlung von Coleon A mit 25 bis 50-proz. KOH aq. unter Rückfluss bildet sich unter Ringverengung eine Carbonsäure, deren Reinigung schwierig ist. Bei der Destillation im Hochvakuum, die in kleinen Portionen glatt durchgeführt werden kann, lässt sich eine einheitliche, wohlkristallisierte, rote Verbindung XXXI fassen. Aus verschiedenen Gründen nehmen wir an, dass sich ein bei der Reaktion gebildetes Zwischenprodukt erst bei der Destillation in das gesuchte Produkt verwandelt, worauf z. B. UV.-, IR.- und NMR.-Spektren, die vor und nach der Destillation aufgenommen wurden, hinweisen. Das neue, durch Destillation gewonnene Produkt lässt sich gut umkristallisieren, analysiert zu C₂₀H₂₀O₅ und schmilzt bei 209–210°. Es ist also formell am Coleon A eine Wasserabspaltung eingetreten. Die Titration der neuen Substanz in 80-proz. Methylcellosolve ergab ein Äquivalentgewicht von 352,3 und ein pK von 4,25. Es handelt sich also um eine relativ saure Verbindung. Das UV.-Spektrum (siehe Fig. 14) weist eine gegenüber Coleon A starke hyposochrome Verschiebung und Vereinfachung auf. Im IR.-Spektrum sind wichtig das Verschwinden der «freien» Hydroxylbande des Coleons bei 2,78 μ und das Auftreten von 3 scharfen Banden um 6 μ [1709 (= COOH), 1667 (= cheliertes Indenoncarbonyl), 1605 cm⁻¹ (= Doppelbindung im Indenon?)], siehe Fig. 159). Das NMR.-Spektrum beweist die Anwesenheit aller ursprünglichen Alkylsubstituenten (auch der Allylgruppe!) und weist eine grosse Ähnlichkeit mit dem von Anhydro-isocoleon A (XIVa) auf.

Methylierung von XXXI mit Diazomethan führt zum Methoxy-methylester XXXIVa (Smp. 100–101°), der ein gegenüber dem Ausgangsmaterial kürzerwelliges

Fig. 14. Spektren im UV. und Sichtbaren der Indenoncarbonsäuren XXIX, XXXI und XXXVa

⁹) In den Indenonderivaten XXXI, XXXIVa, XXXVa, XXXVb, XXXVI tritt zudem eine starke Bande bei ca. 1490 cm⁻¹ auf.

Fig. 15. IR.-Teilspektren der Indenoncarbonsäuren XXIX, XXXI, XXXVIII und einiger ihrer Derivate

UV.-Maximum und vor allem die gesuchte Verschiebung der Carbonylabsorption im IR. aufweist: 1733 (Methylester), 1689 (Indenoncarbonyl, frei), 1565 cm⁻¹ (Doppelbindung?), siehe Fig. 15. Diese beträchtliche Verschiebung der CO-Bande nach kürzeren Wellen ist nur mit der Aufhebung einer intramolekularen Wasserstoffbrücke zu erklären. Auch das Mono-O-acetylderivat XXXIVb weist die hypsochrome Verschiebung der Carbonylgruppe auf (1698 cm⁻¹).

Aufs schönste lassen sich diese Schlüsse durch Messungen an der Modellsubstanz XXIX bestätigen¹⁰). Ihr UV.-Spektrum (siehe Fig. 14) ist erwartungsgemäss kürzerwellig als das von XXXI, im IR. findet man Banden bei 1718 (COOH), 1706 (Indenoncarbonyl, uncheliert), 1605 cm⁻¹ (Doppelbindung?), nach der Methylierung mittels Diazomethan (\rightarrow XXX) tritt hier keine Verschiebung der Indenoncarbonylfrequenz ein: 1724 (COOCH₃), 1713 (Indenoncarbonyl), 1605 cm⁻¹ (Doppelbindung?), siehe Fig. 15.

Was nun die Veränderung an der Halbacetalseite des Coleons A betrifft, so haben wir Gründe anzunehmen, dass sie während der Destillation der Carbonsäure eintritt. Vorher sind laut NMR. die quaternäre Methylgruppe und das Halbacetalproton noch vorhanden. Nachher sind beide zugehörigen Signale verschwunden und es erscheint das Signal einer neuen, an einer Doppelbindung stehenden Methylgruppe. Zugleich verschiebt sich das Signal der –CH₂-Gruppe um etwa 1 ppm. Aus diesen Daten ergibt sich, dass hier wiederum, ähnlich wie in der Iso-Reihe, eine Umlagerung zu einem Benzofuran-System eingetreten ist. Methyliert man vor der Destillation mit Diazomethan, so trifft diese Umlagerung nicht ein (vgl. Formelschema G und exp. Teil). Die naheliegende Annahme, dass es sich in diesem Fall ebenso um eine WAGNER-MEER-WEIN-Umlagerung der Allylgruppe wie beim Übergang in die Iso-Reihe handelt, konnte nicht bestätigt werden. Vielmehr ist in diesen Reaktionen die Methylgruppe an die a-Stellung des Benzofurans gewandert. Dies ergibt sich klar aus der Nichtidentität von XXXI mit der Indenoncarbonsäure XXXV, die aus der Alkalibehandlung von Anhydro-Isocoleon A (XIVa) gewonnen worden war. Diese neue Substanz entsteht bei der KOH-Behandlung direkt, ist nach Hochvakuumdestillation wiederum tiefrot

¹⁰) Wir danken Herrn Dr. R. G. COOKE, Melbourne, auch hier für die freundliche Überlassung einer Probe von XXIX.

gefärbt, schmilzt aber höher als XXXI (219–222°) und weist ein mit dessen IR.-Spektrum nahezu identisches IR.-Spektrum auf: 1718 (COOH); 1669 (Indenoncarbonyl, cheliert); 1603 (Doppelbindung?); nach der Methylierung mit Diazomethan: 1727 (Methylester); 1689 (Indenoncarbonyl); 1563 cm⁻¹ (Doppelbindung?). Die UV.-Spektren sind überraschend deutlich verschieden (siehe Fig. 14), was wohl auf eine gewisse Interaktion der Allyldoppelbindung mit dem chromophoren System hinweist. Dass diese in α -Stellung des Furanringes bathochromer wirkt als in β -Stellung, ist aus anderen Beispielen bekannt. Eindeutig verschieden, wenn auch wiederum grundsätzlich ähnlich, sind die NMR.-Spektren der Methyläther (siehe Fig. 16 und 17): in XXXVb fallen die beiden Signale der Methylgruppen zusammen (2,30 ppm), bei XXXIVa sind sie getrennt; das Signal der $-CH_2$ -Gruppe in XXXVb liegt bei 1,97 ppm (d, J = 5,0 Hz), während es bei XXXIVa bei 3,45 ppm (d, J = 6 Hz) auftritt. Auch bei den Signalen der Allylgruppen sind grosse Verschiebungen sichtbar.

Fig. 16. NMR.-Spektrum des Indenoncarbonsäure-methyläther-methylesters XXXVb

Im Abschnitt 5 sind die Beweise für die Allylwanderung bei der Bildung des Anhydro-isocoleons vorgebracht worden. Daraus folgt die Struktur XXXI für das Alkali-Umlagerungsprodukt aus Coleon A. Aus welchen Gründen bei dieser Reaktion

Fig. 17. NMR.-Spektrum des Indenoncarbonsäure-methyläther-methylesters XXXIVa

eine bevorzugte Methylwanderung eintritt, entzieht sich vorläufig unserer Kenntnis. Es handelt sich aber auch um eine säurekatalysierte Reaktion, worauf z.B. die Tatsache hinweist, dass das früher erwähnte Zwischenprodukt XXXVIII nach Veresterung der Carboxylgruppe sich bei der Hochvakuum-Destillation *nicht mehr umlagert*. Eine Indenoncarbonsäure entsteht auch bei der Behandlung des Oxides Xb mit 25-proz. KOH unter Rückfluss. Hier wurde ein orangefarbenes Kristallisat erhalten, Smp. 215–216°, dem die Summenformel C₂₀H₂₂O₇ zukommt (XXXVI).

Substanz	Auswahl von Banden (cm ⁻¹)	Lösungs- mittel	Substanz	Auswahl von Banden (cm ⁻¹)	Lösungs- mittel
111	3497/3289/1664/1623	CCI_	XV	3484/1821/1750/1640/1605/987	Chlorof.
IV	3521/1658/1631	CCI	XVI	3484/1818/1751/1639/1600//	Chlorof.
V	1773/1667/1600/1575	Chlorof.	XXI	3521/3322/1706/1653/1621/1575	Chlorof.
VI	3344/1820/1660/1630/990	Chlorof.	XXIa	- / /1781/1713/1669	Chlorof.
VI-Mono-	1812/1658/1639/990	Chlorof.	XXIb	<i>— </i> 1706/1658/1622	Chlorof.
methyl-			XXIII	3584/3333/1815/1661/1630	Chlorof.
äther			XXIV	-/-/1754/1658/1623	Chlorof.
VII	3344/1821/1661/1629	CCl ₄	XXV	1757/1653/1623	Chlorof.
VIII	1808/1779/1650	Chlorof.	XXVII	1773/1739	Chlorof.
IX	1730/1661	Chlorof.	XXVIII	1842/1818/1776	KBr
Xa	3289/1653/1620	Chlorof.	XXIX	1716/~1706/1608	Chlorof.
Xb	3322/1739/1653/1621	Chlorof.	XXX	1724/1713/1605	Chlorof.
XII	3289/1650/1621	Chlorof.	XXXI	1718/1672/1610/1499	Chlorof.
XII-	3472/1672/1645/1613	CCl ₄	XXXIVa	1733/1690/1565/1486	CCl ₄
Mono-		_	XXXIVb	1773/~1727/1698/1595	Chlorof.
methyl-			XXXVa	1718/1669/1603/1493	Chlorof.
äther			XXXVb	1727/1689/1575/1484	Chlorof.
XIIIa	3333/1650/1621	Chlorof.	XXXVI	3390/2941/1722/1681/1621/1493	Chlorof.
XIIIb	1667/1637/1613	CCl ₄	XXXVIII	3448/1724/1684/1623/1495	Chlorof.
XIVa	3322/1650/1621/990	Chlorof.	XXXIX	3367/1724/1706/1610	Chlorof.
XIVb	1660/1631/1603	Chlorof.	\mathbf{XL}	-/~1754/1733/1706/1613	Chlorof.

Tabelle 2.	IRSpektren
------------	------------

(119	4) HO-	s 13,7 (1)	s 13,5 (1)	$\overset{s}{\overset{12,9}{(1)}}$		13,3 (1)	13, 2 (1)	12,72 (1)	
]	-соон								
(nonid	о) но-					са. 8,0 (1)	$^{ca.}_{(1)}$		
वा	itəəAcet	5,75 - & 5,91 (1)	$5,80 \\ \& \\ 5,87 \\ (1)$	5,75 8 5,84 (1)	6,35 & 6,48 (1)				
-F	CH ⁵ =CH	m 4,17- 5,67 (3)		<i>m</i> 5,50 (3)	m 5,84 (3)	5,30 3)			
	-OCH3			$^{s}_{(3)}$				s 4,08 (3)	
⁸ H	2000-								
H^{-}	р								
ĮÁdo.	Iqo21-H	m 3,35 (1)	m 3,33 (1)	n 3,33 (1)	m 3,17 (1)	$m \\ 3,37 \\ (1)$	n 3,39 (1)	m 3,38 (1)	т 3,25 (1)
.temo	CH3-sto	s 2,67 (3)	s 2,64 (3)	s 2,55 (3)	s 2,63 (3)	s 2,70 (3)	s 2,63 (3)	s 2,55 (3)	s 2,68 (3)
): !	сн³-с=								
	-CH2-	$\begin{array}{c} 2,50\\ (2)\\ J=6,\end{array}$		2,45 (2)	$\begin{array}{c} d \\ 2,47 \\ (2) \\ I = 6 \end{array}$	$\begin{array}{c} d \\ d \\ 2,84 \\ (2) \\ I = 7 \end{array}$	• •		
-	сн³со-								
°H3	-0-CO				(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)				2,37 (6) 2,42 (6)
	€H2		م .				<u>~</u> .	~.	~
Propyl	CH ^{3−}		ca. 1,67 (2)				m 2,03 (2)	т са. (2)	m ca. (2)
I	-•°HO		ca. 0,92 (3)				ca. 0,88 (3)	ca. 0,87 (3)	са. 0,80 (3)
.10	nb-8110	د د 3) (50	3,40 3,47	3),45 3),45	,45 & 3),47	,67 3)	,61 3)	,58 3)	3)
+0		1010			-~	· · · ·	s H	s 1 C	S 1 ()
H-	$CH^{3}-\dot{C}$	10					10		
H	(CH ³) ⁵	$\int_{J=7, 1, 28}^{d}$	d = 1,27 (6) J = 7	d = 1,23 (6) J = 7	$\begin{array}{c} d \\ 1,22 \\ (6) \\ I = 7 \end{array}$	d = 1,30 (6) = 7	$\begin{pmatrix} a \\ (6) \\ f = 6 \\ \end{pmatrix}$	d = 1,27 (6) J = 7	$ \begin{array}{c} $
	nyiH		.			m m	ŝ	, , , , , , , , , , , , , , , , , , , ,	
lət t im e	gnus öJ	CDC13	DCCI	cci₄	ccl	CDC13	ccl4	ccı	CDC13
Zunp	Verbine	I	III	IV	>	IV	IIV	VIIa	IIIV

Tabelle 3. NMR.-Spektren

492

(4400	d) 110	(1)		4,00 L)	3,70 1)		3,90	3,75 1)	
(1404	/) HO-	1		s i C	S []		s 11 S	2 F &	
f (nonn)	-COOF	1)	п CDC	,05 1)			,95 1)		
(;-1)		w () /		s 8 –			s L ()		
្រេ	1924-H						6.5	7-2-	40
-H	CH ³ =CI				10		% 4 % (9,1 (3)) z 4 9 (9,1 (9)	(3),6 %
:	-OCH				ء (3)			ء (3) گ	
⁸ H3	-000		2						
H^{-}	ĊH³−Ċ		т 5,1 (1)						
Lopy	dosI-H	m 3,77 (1)	т са. 3,37 (1)	m 3,38 (1)	m 3,55 (1)	m 3,29 (1)	m 3,27 (1)	m 3,32 (1)	m 3,27 (1)
.temo	CH ³⁻⁹¹	s 2,94 (3)	ء 2,93 (3)	s 2,82 (3)	s 2,87 (3)	s 2,93 (3)	s 2,83 (3)	s 2,83 (3)	s 2,92 (3)
)=	сн³-ç	s 2,32 (3)	s 2,50 (3)	s 2,34 (3)	s 2,39 (3)	s 2,52 (3)	s 2,33 (3)	s 2,37 (3)	m 2,37 (3)
	-CH2-		3,04 (2) J=6				3,53 (2)	3,55 (2)	3,52 (2)
-(сн ⁸ со								
CH ³	-0-co		$^{s}_{(6)}$			s 2,37 (3) 2,39	Ð		s 2,50 (3) (3) (3)
ł	CH ³ -			$\begin{array}{c} 2.74 \ (2) \ J=6,8 \end{array}$	2,77 (2)	$\begin{array}{c} 2,72\ (2)\ J=6,5 \end{array}$			
Propyl	− ° H⊃			m 1,70 (2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	m 1,73 (2)	m 1,75 (2)			
	CH³−			$ \begin{array}{c} t \\ 0,96 \\ (3) \\ J = 6,3 \end{array} $	$ \begin{array}{c} t \\ 0.97 \\ (3) \\ l = 7 \end{array} $	$\int_{f}^{t} 0.97$ $\int_{f}^{0.97} 6.5$			
.tet.	n b- ⁰HЭ								
H-	- 	$1,37\\ \&\\ 1,47$	(3) d 1,30 (3) f = 6,5						
н	Eigur (CH ³)20	$\begin{array}{c} d\\ 1,50\\ (6) \end{array}$	$ \begin{array}{c} J = 7 \\ d \\ 1,25 \\ (6) \\ J = 7 \end{array} $	$ \begin{array}{c} a \\ 1.32 \\ (6) \\ j = 7 \end{array} $	d = 1,28 (6) I = 7	$ \begin{array}{c} d \\ 1,25 \\ (6) \\ J = 7 \end{array} $	$\begin{array}{cc} 7 & d \\ 7 & 1,32 \\ (6) \\ 7 = 7 \end{array}$	$\begin{array}{c} d\\ 1,30\\ 1,30\\ \mathbf{1=7}\\ \mathbf{1=7}\\ 1 \end{array}$	$ \begin{array}{c} \mathbf{d} \\ 1,23 \\ \mathbf{(6)} \\ \mathbf{j}=7 \end{array} $
fəttimeş	zausõJ	Pyrid.	CDCI _s	cDCI	cDCl ₃	cDCI3	cDCI	CDCI ₃	cci
Zunp	Verbine	XII	XIIa	XIIIa	AIIIX	XIIIc	XIVa	XIVb	XIVc

Volumen 48, Fasciculus 3 (1965) - No. 53

Tabelle 3. NMR.-Spektren (Fortsetzung)

493

Tabelle 3. NMR.-Spektren (Fortsetzung)

HELVETICA CHIMICA ACTA

(11a	р¢) но-			$^{s}_{(1)}$		s 13,32 (1)		s 13,30 (1)	s 13.40 (1)
	нооэ-								
(nonid	о) но-							ca. 8,0 (1)	
Įŧ	stəəA-H								
-H	CH³=CH	m 4,92- 6,17 (3)							
	-OCH ³					s 4,03 (6)	3,90 (6) (3) (3)		3,92 & 8,03 (3) (3) (3) (3) (3)
°H	10000-							10	~
Η	CH ³ -¢-							3,16 (1)	и (1) (1)
obàj	rqoaI-H			m 3,39 (1)	m 3,22 (1)	m 3,32 (1)	m 3,32 (1)	m 3,37 (1)	m 3,40 (1)
.tem	CH3-210	s 2,85 (3)	s 2,87 (3)	s 2,57 (3)	s 2,59 (3)	s 2,50 (3)	° (3) (3)	$\overset{s}{\overset{2}{k}}$ $\overset{c}{\overset{2}{k}}$ $\overset{2}{,}69$ (3)	2,60 & 2,64 (3)
)	=⊃–₽HЭ	s 2,38 (3)	ء 2,39 (3)						
	-CH ² -	3,55 (2)						2,30 (2)	2,14 (2)
-	CH ³ CO-			s 2,55 (3)	s 2,48 (3)	s 2,45 (3)	s (3) (3)		
8HC	-0-00				$^{\circ}_{5,30}^{\circ}$ 2,40 (9)	.			
	CH ³⁻		2,78 (2)						
Propyl	CH ³ -		$m_{(2)}^{m}$						
	CH ³ -		f = 0.99 J = 6,1	•					
.tt.	CH ³ -dn	-						$ \begin{array}{c} 1,57\\\&\\\&\\1,62\\(3)\end{array} $	$ \begin{array}{c} 1,78\\ \&\\ 1,83\\ 1,83\\ (3) \end{array} $
Н	;BHJ							d ca. 1,18 (3)	d = 1,42 (3) J = 6,3
H	(CH ³) ⁵ C Eigur	6		d = 1,30 (6) J = 6,5	d = 1,25 (6) J = 7	$12 ext{ } \begin{array}{c} 1,22 \\ 1,22 \\ 6 \\ J=7 \end{array}$	d = 1,27 (6) $J = 7$	$\int_{J=7}^{d}$	d = 1,29 (6) $J = 7$
ləttima	sgnusö.l	CDC13	cDCl	CDC13	CDC13	CDC13	CCI4	CDC1 ₃	CDCl ₃
Sun	bnid19V	XV	XVI	IXX	XXIa	dIXX	XXIc	XXIII	XXIV

(113	d) 110-		a. ,84 1)					
(,	4) HU		20 c),40			
(ноор-		, <u>6</u>		s (1			
(nonid	о) но-						2 5	5
נש	н-Асећ		.! _	! _	,		- 8,5 5,4 (1)	. 8,3 (1) (1)
−ŀ	CH³=CH		<i>m</i> 5,50 (3)	7 4,84 6,00 (3)	m 6,00 (3)	6,00 (3)	m 4,83 5,42 (3)	m 4,84 6,00 (3)
	-OCH ³) 3,84 (6) }		s 2 4,27 (3)		s 2 4,47 (3)	s 14,03 (3)	s (4,05 (3)
8H3	2002-	3,9((6) 3,92(s 3,92 (3)		s 3,92 (3)	s 3,90 (3)	s 3,92 (3)
H^{\cdot}				n 2,78 (1)				
ĮÁdo:	ıqozI-H		2 ,90 (1)		m 3,84 (1)	m 2,67 (1)	n (1)	и 2,74 (1)
.temo	CH ^{3-gro}		s 2,39 (3)	s 2,30 (3)	s 2,47 (3)	s (3)	s 2,07 (3)	$^{s}_{(3)}$
	CH³−C=		s 2,23 (3)	s 2,25 (3)	s 2,45 (3)	s 2,30 (3)		
	- ⁸ u		1,46 2)	1,45 2) 1=6	;,44 2) r = 6,5	,97 (2	2)	2),42
-	oo ^s Ho				$m \subset S$			60
⁸ HC	00- 0 -				2,25 (3)			2,09 (3)
	CH ³ -							
Propyl	CH ^{8−−}							
	8110							
	CH						52 SS	9
.te	CH ^{3-dn}							1,4 (3)
H								
н	5(8770)		,30 5) = 6,5	() () ()	,25 .) = 6,5	(22)	.18 = 7	$\frac{1}{2}$
/	ngiH)		7318	17 1 (() 17 1 ()	J = 1 J = 1		もしりて	U H H H
*****	9	DCI3	DCI3	DCI	DCI3	DCI	DCI3	DCI3
lettime	∞uusö.1		C	Va C	Vb C	ں م	x X	C I
Q			IXX.	XXI	XXI	XXV	XXD	н
aun	Verbind		24	X	X	x	×	X I

Tabelle 3. NMR.-Spektren (Fortsetzung)

Volumen 48, Fasciculus 3 (1965) - No. 53

495

für einzelne Methyläther und Acetate zu. In XXXIX zeigt das Signal der quaternären Methylgruppe Feinstruktur.

Verbindung	Lösungsmittel	Figur	λ_{max} (nm) log ϵ	$\dot{\lambda}_{min} (\mathrm{nm})$ log $arepsilon$
Ι	Äther		213 /230 /231 /273 /315 /432 /~454 4,33/4,30/4,22/4,07/4,00/3,77/3,73	220 247 265 293 342 450 4,22 4,21 4,02 3,73 2,68 3,71
IV	Äther		228/276/305/ ca. 445	262/294/ ca. 340
V	Äthanol	6	266 /354 4,48/3,52	240 /310 3,92/2,94
IΛ	Äther	4	245 /304 / ca. 420 /~440 4,21 /4,04/ 3,75/3,65	280 /335 3,70/2,57
ΠΛ	Äthanol		217 /248 /305 /418 / \sim 440 4,49/4,36/4,18/3,91/3,81	243 /279 /335 4,32/3,94/3,11
IIIA	Äthanol		241 $ 288$ $ 298$ $ 322$ $ 3375,10 3,95 3,91 3,36 3,38$	265 /295 /315 /328 3,69/3,87/3,31/3,25
$\mathbf{X}\mathbf{a}$	Äthanol		212 238 254 271 314 ~415 430 4,31/4,25/4,20/4,09/4,01/3,72/3,74	224 246 265 293 245 4,22 4,17 4,09 3,89 3,00
Xb	Äthanol		212 232 254 271 313 ~415 432 460 4,31 4,22 4,18 4,13 4,01 3,74 3,77 3,67	225 245 264 292 345 4,22 4,18 4,11 3,93 3,08
1X	Äthanol		242 289 300 329 344 4,93 4,44 4,38 3,96 4,08	260 295 320 335 4,05 4,34 3,76 3,93
XII	Äther	9	234 271 322 ca. 450 4,35 4,57 3,82	220 /250 /307 /355 4,19/4,10/3,73/3,27
XIIIa	Äthanol		232 271 320 ca. 450 4,33 4,54 3,82	248 /308 /356 4,09/3,93/3,34
AIIIb	Äther		235 /270 /317 / ca. 455 4,40/4,49/3,73/ 3,88	250 /310 /355 4,00/3,71/3,12
XIIIc	Äther		226 273 395	241 / ca. 315
XIVa	Äther	6	234 270 322 ca. 450 4,39 4,59 3,82	217 /248 /307 /355 4,19/4,01/3,73/3,27
XIVb	Äther		235 /270 /312 / ca. 450	248 /307 /350

Tabelle 4. Extrema von Elektronenspektren

221 280 312 349 3,98 3,70 3,47 3,94	222 282 311 350 3,72 3,70 3,47 3,93	220 286 346 ca. 415 446 4,13 3,88 2,98 3,67 3,66	230/298	\sim 244/278/336	245 /285 /335 4 12/3 87/3 01	237 285 320	228 / ca. 320	ca. 280	231 290 325 3,55 3,24 3,22	285 362 2,55 2,26	217 /280 / ca. 370	237 /335 4,23/2,95	238 /316	230 / ca. 310	247 299 340 3,92 4,38 3,00	249 298 337	235 /312 /423 4,11/2,81/3,11	$257/\sim 316$	241/ ca. 305/ ca. 410	240/ ca. 300/395
250 ~265 285 343 357 4,65 4,16 3,71 3,99 3,99	250 ~270 290 342 357 4,70 4,14 3,75 3,99 4,00	232 ~250 306 ~410 428 450 4,24 4,10 4,01 3,69/3,74 3,68	250/ 350	212/~250/300/ ca. 417	220 /255 /300 / ca. 430 4.35/4.16/4.02/ 3.13	265 290 365	250 /350	212 /290	255 /304 /348 4,06/3,31/3,34	243 /325 / ca. 400 4,51/3,17/ 2,73	242 /325 / ca. 400	266 ca. 400 4,59 3,89	266 /386	270 /375	292 /303 / ca. 415 4,55/4,41/ 3,92	292 /302 /400	256 370 466 4,65 3,52 3,20	$227/290/\sim 320$	261/ca. 350/ca. 450	257/ ca. 350/ ca. 435
œ	10	11			6				13	14		14			14					
Äther	Äther	Äther	Äther	Äthanol	Äther	Äther	konz. H ₂ SO ₄	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther	Äther
> X 32	IVX	XXI	XXIa	IIIXX	XXIV	XXV	IVXX	IIVXX	IIIAXX	XIXX	XXX	XXXI	XXXIVa	XXXIVb	XXXVa	XXXVb	ΙΛΧΧΧ	IIVXXX	XXXIX	XL

Aus den in Abschnitten 1–7 vorgelegten Ergebnissen folgt, dass Coleon A Struktur Ia besitzt¹¹).

In den Tabellen 2, 3 und 4 sind die Hauptdaten der IR.- (Tab. 2), NMR.- (Tab. 3) und Elektronenspektren (Tab. 4) der untersuchten Verbindungen wiedergegeben.

8. Bemerkungen zur Struktur von Coleon A. – Coleon A stellt unter den bisher bekanntgewordenen Chinonen ein Novum dar. Seine offensichtlich isoprenoide Natur ergibt sich aber aus der Summenformel, sowie aus der Anwesenheit einer Isopropylgruppe. Wir nehmen an, dass es ein 1,10-*seco*-Diterpen aus der Abietangruppe vorstellt. Es müssten also bei der Biogenese von Coleon A die Ringe B und C aromatisiert und vollhydroxyliert werden. Weiterhin wäre eine der geminalen Methylgruppen zum Aldehyd oxydiert worden und im Ring A eine Dehydrierung zwischen C-1 und C-2 und eine Spaltung zwischen C-1 und C-10 eingetreten. Nach weiterer Oxydation des Ringes C zum Chinon und intramolekularer Halbacetalisierung der Aldehydgruppe gelangte man zum Coleon A. Vielleicht umfasst die Bildung von Coleon A in der Pflanze nicht nur enzymatisch gesteuerte Stufen. Das Vorkommen der Pigmente in Drüsen auf der Blattunterseite lässt auch an die Möglichkeit photochemischer Schritte denken.

In Bezug auf den wahrscheinlich isoprenoiden Charakter von Coleon A besteht eine gewisse Verwandtschaft mit Royleanon (XX) und Acetoxyroyleanon [19], zwei Diterpenchinonen, die aus den Wurzeln von Inula royleana D.C. (Compositae) sowie aus den Wurzeln von Salvia officinalis L. (Labiatae) [20] isoliert worden sind, und ferner zu Horminon (= 7-Hydroxyroyleanon), das in Horminum pyrenaicum L. (Labiatae) aufgefunden worden ist [21]. Auch der Nebenfarbstoff Coleon B aus Coleus igniarius SCHWEINF. (Labiatae) [1] hat diterpenoiden Charakter, worüber wir (mit H. P. KÜNG & A. CHANG) noch berichten werden, wie vermutlich auch das rote Pigment Fuerstion aus Fuerstia africana T.C. E. FRIES (Labiatae) [22]. Wir möchten hier auf die auffällige Tatsache aufmerksam machen, dass oxydierte und modifizierte Diterpene bisher vor allem in Vertretern der Labiaten aufgefunden worden sind, was wohl einer weiteren Beachtung Wert sein wird. Es sei in diesem Zusammenhang auch an Enmein aus Isodon trichocarpus KUDO (= Plectranthus trichocarpus; Labiatae) [23], an Tanshinon II, Cryptotanshinon aus Salvia miltiorrhiza (Labiatae) [24]

Formelschema H

¹¹) Die absolute Konfiguration am Zentrum der quaternären Methylgruppe wurde von uns nicht untersucht. – Wir haben in allen benutzten Formeln parachinoide Strukturen benutzt. Die ebenfalls mögliche tautomere orthochinoide Form haben wir nicht berücksichtigt, da in den NMR.-Spektren das Signal des *peri*-OH überall zu sehen ist. Wir haben uns davon überzeugt, dass 1,8-Dihydroxynaphtaline kein solches Signal aufweisen.

und an Pikrosalvin und Desoxypikrosalvinsäure aus *Salvia officinalis* L. und anderen *Salvia*-Arten (*Labiatae*) [25] erinnert.

Ein natürlicher Vorläufer für Coleon A könnte das Phenol Ferruginol (siehe Formelschema H) sein. Wir haben deshalb unter den beträchtlichen Mengen von epiphasischen Stoffen, die bei der Aufarbeitung der Coleone anfallen, nach Phenolen gesucht. Eine in Anlehnung an eine Vorschrift von BRIGGS *et al.* [26] zur Isolierung von Ferruginol aus *Podocarpus dacryoides* A. RICH. durchgeführte vorläufige Untersuchung war allerdings negativ; es wurden nur Spuren von phenolischen Inhaltsstoffen in der untersuchten Fraktion aufgefunden. Hingegen wurden bei dieser Gelegenheit zwei neue Stoffe: *Coleus*-Substanz C, C₃₀H₅₀O, Smp. 139–140°, $[\alpha]_D^{25°} = -33°$ (Benzol), farblose Blättchen aus Äthanol und *Coleus*-Substanz D, C₃₀H₅₀O, Smp. 174–175°, $[\alpha]_D^{25°} = +89°$ (Benzol), farblose Blättchen aus Äthanol, entdeckt, über deren chemische Natur noch nichts weiteres bekannt ist.

Wir danken Herrn P. R. O. BALLY, Genf, für seine stete Hilfe bei der Beschaffung des Pflanzenmaterials. Für finanzielle Unterstützung sind wir der GEIGY-Jubiläums-Spende und dem ANNA-FEDDERSEN-WAGNER-Fonds an der Universität Zürich zu Dank verpflichtet. Dem einen von uns (D. K.) wurde die Teilnahme an dieser Arbeit durch ein Stipendium der SCHWEIZER SCHMIRGEL & SCHLEIF-INDUSTRIE, SIA, Frauenfeld, ermöglicht, wofür wir ebenfalls danken.

Herrn H. FROHOFER und Mitarbeiterinnen in unserem Mikroanalytischen Labor danken wir für Analysen und IR.-Spektren. Herrn Dr. J. SCARPA sind wir für die Aufnahme und Diskussion zahlreicher NMR.-Spektren zu Dank verpflichtet. Den Herren Dr. R. G. COOKE, Universität Melbourne, und Dr. O. E. EDWARDS, National Research Council, Ottawa, sind wir für die Mitteilung von Spektraldaten und die Überlassung von Präparaten zu Dank verpflichtet.

Experimenteller Teil

Vorbemerhungen: Infrarotspektren wurden an einem PERKIN-ELMER-Spektrographen, Modell 21 mit NaCl-Optik; Elektronenspektren am BECKMAN DK₂ und UNICAM SP 500 mit RSV-Zusatz; NMR.-Spektren an einem VARIAN-A-60-MHz-Spektrometer aufgenommen (interner Standard: Tetramethylsilan). Die Ozonisationen wurden mit dem WELSBACH Ozonator, Modell T-23, unter den jeweils angegebenen Bedingungen ausgeführt. Zur Chromatographie diente Kieselgel MAL-LINCKRODT (nach RAMSAY und PATTERSON, 100 mesh), entweder gemischt mit $^{1}/_{3}$ seines Gewichtes an Celite («Kieselgel-Celite») oder aber ohne Celite-Zusatz («Kieselgel»). Dünnschichtchromato-gramme wurden auf Kieselgel G, MERCK, ausgeführt. Übliche Aufarbeitung bedeutet: Extraktion mit dem angegebenen Lösungsmittel, Waschen der vereinigten Extrakte mit Wasser und gesättigter Kochsalzlösung, Trocknen über wasserfreiem Natriumsulfat oder Magnesiumsulfat. Da viele der hier beschriebenen Verbindungen hartnäckig Lösungsmittel zurückhalten, mussten die Analyse entweder im Hochvakuum sublimiert oder mindestens 24 Std. bei der angegebenen Temperatur und 10^{-3} Torr getrocknet werden.

1. Ozonabbau am Coleon A (I) \rightarrow HCHO. – 166 mg Coleon A in 25 ml Eisessig wurden bei 18° ozonisiert (120 V, 0,45 kg/cm², Ozonprobe). Nach Durchleiten von 130 l O_3/O_2 -Gemisch (30 Min.) wurde die ozonisierte Lösung mit 30 g Eis und 5 g Zinkstaub versetzt und solange geschüttelt, bis das Eis geschmolzen war. Hierauf wurde sie mit Wasserdampf destilliert. Nach dem Ausschütteln des Destillates mit wenig Äther wurde wie üblich mit einer gesättigten Lösung von Dimedon versetzt. Das gewonnene Formaldimedon schmolz nach zweimaliger Umkristallisation (aus Äthanol) bei 188°, Ausbeute 35 mg; analog 45 mg aus 201 mg Coleon A.

Dihydrocoleon A (III) lieferte unter denselben Bedingungen in zwei Ansätzen mit je 160 und 200 mg keinen Formaldehyd.

2. Tri-O-acetyl-Coleon A (V). – 260 mg Coleon A in 30 ml Pyridin wurden mit 15 ml Essigsäureanhydrid 20 h bei Zimmertemperatur (Z.-T.) stehengelassen. Hierauf hat man die Lösung in überschüssige 2N HCl+Eis eingegossen und das Acetat mit Äther extrahiert. Nach üblicher Aufarbeitung wurde das erhaltene Acetat mit Chloroform an SiO₂-Celite chromatographiert und im Vakuum destilliert ($120-140^{\circ}/10^{-5}$ Torr, Kugelrohr). Das Triacetat wurde als zitronengelber, amorpher, pulverisierbarer Lack erhalten.

 $C_{26}H_{28}O_9$ (484,48) Ber. C 64,45 H 5,83% Gef. C 64,63 H 5,81%

Analog wurde aus Dihydrocoleon A ein Triacetylderivat mit schr ähnlichen Eigenschaften und nahezu identischen UV.- und IR.-Spektren erhalten.

3. Coleon-A-lacton (VI). – a) Durch OPPENAUER-Oxydation: 0,20 g Coleon A wurde mit 1 g Al-t-butylat in 10 ml Toluol mit 10 ml Cyclohexanon 16 h unter Rückfluss erhitzt. Nachher säuerte man das dunkelrote Reaktionsgemisch mit 2N HCl an und extrahierte mit Äther. Die Ätherextrakte wurden hierauf im Vakuum eingedampft und der Rückstand zur Entfernung von Cyclohexanon bei 10^{-3} Torr erwärmt. Dann löste man das rote Farbharz in wenig Toluol und chromatographierte die Lösung mit Toluol an einer kleinen Säule von SiO₂-Celite. Es wurden zwei Zonen beobachtet, eine fest haftende *rote* Zone, die nach Elution 110 mg wog und aus Ausgangsmaterial bestand, und eine rascher wandernde *gelbe*, die das gesuchte Lacton darstellte; Ausbeute an Rohprodukt ca. 10%.

b) Durch Oxydation mit CrO_{g} -Eisessig: 0,20 g Coleon A in 6 ml Eisessig wurde mit 100 mg CrO_{g} , gelöst in 2 ml 80-proz. Essigsäure, versetzt und die Lösung während 48 h bei 55° stehengelassen. Nach Zugabe von 10 ml Wasser wurde mit Äther extrahiert und wie üblich aufgearbeitet (Trocknen des Rückstandes bei 10^{-2} Torr). Dann wurde aus Toluol wie unter a) an SiO₂-Celite chromatographiert. Erhalten wurden 20% Ausgangsmaterial und 15% rohes Lacton.

c) Durch Mangandioxid-Oxydation: 0,30 g Coleon A, gelöst in 100 ml Benzol, wurde mit 3,0 g $\{MnO_2\}$ «sauer» [5] während 5 h bei Z.-T. intensiv geschüttelt. Hierauf wurde durch eine mit Celite gedichtete Fritte abgesaugt und der Nutscheninhalt solange mit Äther nachgewaschen, bis das Filtrat farblos ablief. Zum Schluss wurde die Mangandioxid-Celite-Mischung in Wasser suspendiert und solange mit SO₂ behandelt, bis MnO_2 reduziert war. Darauf wurde erneut mit Äther extrahiert, wodurch sich weitere Mengen an Farbstoff gewinnen liessen. Die vereinigten Ätherlösungen wurden wie üblich aufgearbeitet und zusätzlich mit wässeriger Komplexon-III-Lösung gewaschen und an SiO₂-Celite chromatographiert. Ausbeute an rohem Lacton 50%.

Das aus der oberen roten Zone regenerierte Pigment kann vorteilhaft bei einer neuen Oxydation erneut eingesetzt werden.

d) Reindarstellung des Coleon-A-lactons: Das aus verschiedenen Oxydationsansätzen gewonnene ölige Lacton wurde im liegenden Rohr bei 130–140° (Luftbad) und 10^{-5} Torr destilliert. Aus sehr konzentrierter Äther-Hexan-Lösung schieden sich bei längerem Stehen orangerote Prismen aus. Smp. 90° (unscharf). Zur Analyse wurde 3 Tage bei 10^{-3} Torr/30° getrocknet.

C₂₀H₂₀O₆ (356,36) Ber. C 67,40 H 5,66% Gef. C 67,16 H 5,62%

Mit Diazomethan in Äther wurde aus Coleon-A-lacton cin *Monomethyläther* als Öl erhalten, der auch bei der MnO₂-Oxydation von Coleon-A-monomethyläther wie unter c) entstand.

4. Dihydrocoleon - γ -lacton (VII). – a) Durch Oxydation von Dihydrocoleon A: 200 mg Dihydrocoleon A [1] in 100 ml Benzol wurden mit 2,0 {MnO₂} «sauer» wie unter 3c) beschrieben oxydiert und die Oxydationsprodukte chromatographisch an SiO₂-Celite aufgetrennt. Ausbeute 50%. Das Produkt wurde aus einer konzentrierten Methanollösung umkristallisiert. Orangerote Kristalle, Smp. 149,5–150°. Auch durch OPPENAUER-Oxydation (Cyclohexanon-Al-t-butylat/Toluol) kann das Dihydrolacton aus Dihydrocoleon A erhalten werden.

b) Durch Hydrierung von Coleon-A-lacton (V1): 227 mg chromatographisch gereinigtes Coleon-A-lacton wurden in 25 ml Äthanol mit 200 mg Pd/BaSO₄ 5-proz. bei Raumtemperatur hydriert. Innert 50 Min. wurden 1,7 Mol. H₂ absorbiert; die Hydrierung kam bei 1,9 Mol.-Äq. zum Stillstand. Nach der Hydrierung wurde die hellgelb gefärbte Lösung mit 0,5 g Ag₂O bei Z.-T. 30 Min. geschüttelt, durch eine mit Celite gedichtete Nutsche filtriert und der Nutscheninhalt gut mit Alkohol ausgewaschen. Nach Verdampfen des Lösungsmittels schüttelte man den Rückstand mit Äther und etwas wässeriger Komplexon-III-Lösung. Nach üblicher Aufarbeitung wurde das Dihydrolacton im liegenden Rohr destilliert (130°/10⁻⁵ Torr) und das Destillat aus Methanol oder Methyl-cyclohexan umkristallisiert. Ausbeute 67%. Die Substanz erwies sich mit dem auf Weg a) erhaltenen Produkt als identisch (IR., UV., NMR., Smp.).

 $C_{20}H_{22}O_6$ (358,38) Ber. C 67,02 H 6,19 O 26,79% Gef. 67,06 H 6,21 O 26,63% (Mittel aus 4 Analysen).

c) Methyläther: Hergestellt in Äther bei 0° durch kurze Behandlung mit ätherischer Diazomethanlösung. Öl, Sdp. $110-120^{\circ}/10^{-5}$ Torr (Kugelrohr).

d) Leucoacetat VIII: 110 mg Dihydrolacton VII in 5 ml Pyridin wurden mit 5 ml Essigsäureanhydrid und 0,7 g Zinkstaub versetzt und 30 Min. geschüttelt. Nach Eindampfen im Vakuum wurde mit viel Chloroform ausgezogen, die Lösung mit Säure neutral gewaschen und der nach Eindampfen erhaltene Rückstand aus Methanol umkristallisiert. Schöne, farblose Nadeln, Smp. 251–253°, Ausbeute 73%. Zur Analyse wurde 48 h bei 90°/10⁻³ Torr getrocknet.

 $C_{28}H_{32}O_{10}~(528,54) \qquad \text{Ber. C}~63,62 \quad \text{H}~6,10 \quad \text{O}~30,27\,\% \qquad \text{Gef. C}~63,74 \quad \text{H}~6,25 \quad \text{O}~30,52\,\%$

Auch das NMR.-Spektrum zeigt die Anwesenheit von 4 Acetoxygruppen.

5. Methylierende Ringöffnung des Dihydrolactons VII. – 300 mg Dihydrolacton A wurden in 50 ml Äther mit überschüssiger Diazomethanlösung vormethyliert und der nach dem Eindampfen erhaltene Methyläther (320 mg) in 30 ml Aceton mit 3 ml Dimethylsulfat und 5 ml 50-proz. KOH unter Rückfluss erhitzt. Innert einer Stunde gab man noch 8mal je 1 ml Dimethylsulfat, 2 ml 50-proz. KOH und 12 ml Aceton versetzt und noch 90 Min. unter Rückfluss erhitzt. Nachher wurde filtriert und das Filtrat im Vakuum eingeengt. Dann folgte eine Ätherextraktion. Durch Zugabe von ätherischer Diazomethanlösung wurde nachmethyliert. Hierauf chromatographierte man aus Toluol-Äther an Aluminiumoxid neutral. Die Substanz aus der rasch wandernden gelben Zone wurde isoliert und im Vakuum destilliert: Sdp. 140–150°/10⁻⁵ Torr, gelbes Harz.

C₂₄H₃₂O₇ (432,50) Ber. C 66,65 H 7,46 OCH₃ 28,70% Gef. C 66,84 H 7,58 OCH₃ 27,67%

6. Reduktion des Lactons VI zu Coleon A. – 90 mg Lacton VI in 6 ml Alkohol wurden mit 33 mg KBH₄ in 5 ml H₂O versetzt. Zuerst entstand intensive Rotfärbung, dann eine farblosc Lösung, die sich wieder allmählich rot färbte. Nach 20 h Stehen bei Z.-T. wurde im Vakuum eingeengt, mit verd. HCl angesäuert und mit Äther ausgezogen. Dünnschichtchromatogramme des Extraktes auf Kieselgel (Essigester) zeigten gebildetes Coleon A (Rf. 0,71) neben unverändertem Lacton (Rf 0,25). Präparative Trennung erfolgte an Kieselgel mit Chloroform. Das erhaltene Coleon A zeigte nun die phenolische Hydroxylgruppe – im Gegensatz zum natürlichen Coleon A – als scharfes Singlett bei 8,15 ppm, sonst waren alle Signale identisch. Nach einer Umkristallisation des reduktiv erhaltenen Coleons A aus Aceton-Methylcyclohexan verschwindet das scharfe Signal bei 8,15 ppm praktisch und das Spektrum ist in jeder Hinsicht mit dem von Coleon A identisch. Ob dieses Phänomen auf Säurespuren, ev. auf Spuren von Borsäure zurückzuführen ist, wurde nicht untersucht. Die Identität der beiden Coleone ergibt sich aus folgender Tabelle:

Reduziertes Lacton	natürliches Coleon A
 Smp. 136–137°	136–136,5°
Misch-Smp. 136,5–137°	
IR. (Chlorof.) 3333, 2941, 1653, 1623 cm ⁻¹	3333, 2941, 1653, 1623 cm ⁻¹
UV. (Ae) $\lambda_{max} 230/251/273/315/ca. 435 \text{ nm}$	230/251/273/315/ca. 435 nm
$\log \varepsilon 4,29/4,22/4,07/4,0/3,78$	4,28/4,22/4,06/4,01/3,77
$[\alpha]_{D}^{22} + 96^{\circ}$	$+82^{\circ}$

NMR.-Verhältnis der beiden Signale der quaternären Methylgruppe bei 1,44 und 1,50 ppm: 1:0,25 1:0,29

7. Oxid Xb. – 2,00 g Coleon A in 50 ml Eisessig wurden mit 6 ml 38-proz. Peressigsäurelösung versetzt. Nach 114 h Stehen bei Z.-T. wurde mit Wasser verdünnt und mit Chloroform extrahiert. Nach gründlichem Auswaschen der Extrakte mit Wasser und Sole (mit Hydrogencarbonat gehen Teile der Substanz in Lösung) wurde wie üblich isoliert und mit Benzol und 15%Äther an SiO₂-Celite chromatographiert. Es wurde solange gewaschen bis die rotorange gefärbte Hauptzone (mit einer geringen gelben Vorzone) ins Filtrat getrieben war. Daraus durch Eindampfen 1,35 g Oxid Xb. Nach weiterem Eluieren der Säule mit Benzol-Äther mit steigendem Gehalt an Äther (bis 50%) wurde eine weitere, langsamer wandernde rote Zone isoliert (0,7 g: Oxid Xa). Das Oxid X b ergab aus Äthanol-Aceton orangerote glänzende Blättchen, Smp. 201-202°.

$C_{22}H_{24}O_8$	Ber. C 63,45	H 5,81	O 30,74%
(416,41)	Gef. ,, 63,65; 63,49	,, 6,06; 5,84	,, 30,67%

Gef. MG. 410 (osmometrisch); $pK_{MCS}^* = 6,58$.

Unter denselben Reaktionsbedingungen bleibt *Dihydrocoleon A* gegenüber Peressigsäure beständig und kann nach der Aufarbeitung unverändert zurückgewonnen werden (Smp., UV.- und IR.-Spektren).

8. Leucopentaacetat XI. – 1,19 g Oxid X b in 30 ml Pyridin wurden mit 30 ml Essigsäureanhydrid und 15 g Zinkstaub versetzt und 30 Min. intensiv geschüttelt. Nach wenigen Sek. trat Entfärbung, bald aber wieder leichte Gelbfärbung ein. Nach Filtration und Eindampfen (Vakuum) wurde der Rückstand mit Wasser und Chloroform behandelt (5×100 ml). Nach Waschen der Extrakte mit $2 \times H_2SO_4$, H_2O und Sole wurde wie üblich isoliert. Den erhaltenen Rückstand kristallisierte man 3mal aus Methanol um. 1,02 g farblose Kristalle, Smp. 198–203°. Zur Analyse wurde 12 h bei 75°/10⁻³ Torr getrocknet. Die Substanz ist dünnschichtchromatographisch einheitlich (Kieselgel-Essigester, violette Fluoreszenz im UV.).

 $C_{30}H_{34}O_{12}$ (586,57) Ber. C 61,42 H 5,85 O 32,73% Gef. C 61,24 H 6,10 O 32,20% Gef. MG. (CH₂Cl₂, vaporometrisch) 551,5.

9. Oxid Xa. – a) *Durch direkte Oxydation*: Die aus der 2. Fraktion (7. Xb) gewonnene Substanz wurde zuerst aus Äther und dann aus Aceton umkristallisiert: hellorange gefärbte Kristalle, Smp. 207°.

C₂₀H₂₂O₇ (374,38) Ber. C 64,16 H 5,92% Gef. C 64,01 H 5,74%

Kein Unterschied in UV.- und IR.-Spektren gegenüber der mit Perphtalsäure gewonnenen Probe: 330 mg Coleon A in Chloroform wurden mit 14,2 ml Perphtalsäurelösung (Chlorof.), Titer 70,3 mg/ml, versetzt und auf 25 ml aufgefüllt. Nach 70 h war ca. 1 Mol. Perphtalsäure aufgenommen. Nach Ausschütteln mit Hydrogencarbonat wurde der Rückstand aus der Chloroformlösung an SiO₂-Celite chromatographiert (Benzol-5% Äther). Aus der orange gefärbten Zone wurden 100 mg Coleon A regeneriert. Dann Entwicklung mit Benzol-Äther (3:2) \rightarrow rote Zone (167 mg). Nach Umkristallisationen aus Aceton-Benzol hellorange gefärbte Prismen, Smp. 199–202°.

 $C_{20}H_{22}O_7$ (374,38) Ber. C 64,16 H 5,92 O 29,92% Gef. C 64,07 H 5,98 O 29,26%

b) Durch Verseifung von Xb: 160 mg Oxid X b in 5 ml Äthanol und 10 ml 0,1N NaOH bei Z.-T. über Nacht stehengelassen. Übliche Aufarbeitung und Chromatographie an SiO₂-Celite wie oben. Aus der langsam wandernden roten Zone 120 mg Oxid X a. Umkristallisationen aus Benzol. Smp. 198–199°. Nach UV.- und IR.-Spektren identische Substanz mit den oben beschriebenen.

C₂₀H₂₂O₇ (374,38) Ber. C 64,16 H 5,92% Gef. C 64,06 H 5,85%

MG. Gef. 369 (Osmometer); $pK_{MCS}^* = 6,61$.

10. Verschiedene Umsetzungen an den Oxiden Xa und Xb. – a) MnO_2 -Oxydation: 50 mg Xb wurden in 25 ml Benzol mit 0,5 g MnO_2 «sauer» wie unter 3c) behandelt. Nach der Aufarbeitung und Trennung an SiO₂-Celite wurden 25 mg kristallisiertes Produkt zurückerhalten, das nach Smp., UV.- und IR.-Spektrum mit dem Ausgangsmaterial identisch war.

b) Hydrierungen: 143 mg Xb in 7 ml Toluol-Äthanol (1:1) nahmen mit 150 mg $Pd/BaSO_4$ (5-proz.) innert 45 Min. 1 Mol. H₂ auf, worauf die Wasserstoffaufnahme noch langsam weiterging. Nach Rückoxydation und Chromatographie wurde unverändertes Ausgangsmaterial zurückerhalten. Analog verliefen Hydrierungen am Oxid Xa.

c) Verschiedenes: Milde Oxydation an Xb mit CrO_3 /Eisessig lieferte nur Ausgangsmaterial. Xa, gelöst in 50-proz. Methanol, verbraucht kein Perjodat innert 8 h. Xb verbraucht in Benzol kein Bleitetraacetat und kann wieder zurückgewonnen werden.

11. Anhydro-isocoleon A (XIVa). – a) Durch Behandlung von Tri-O-acetyl-coleon-A (V) mit Säure: 20 mg Triacetyl-coleon A in 10 ml Benzol versetzte man mit 2 ml konz. H_2SO_4 und schüttelte das Gemisch während 5 Min. bei Z.-T. Hierauf wurde die rosarote Lösung mit Eis und Wasser verdünnt und mit Äther extrahiert. Nach der üblichen Aufarbeitung wurde das erhaltene Reaktionsprodukt mittels Chloroform an Kieselgel chromatographiert. Die aus der orangeroten Zone erhaltene Substanz kristallisierte aus Hexan in orangeroten Nadeln vom Smp. 192–193°. Die Substanz ist optisch inaktiv! Nach Sublimation bei $170^{\circ}/10^{-5}$ Torr wurde analysiert:

C₂₀H₂₀O₅ (340,36) Ber. C 70,57 H 5,92 O 23,50% Gef. C 70,62 H 5,61 O 23,77%

b) Durch Behandlung von Coleon A mit CF_3 -COOH: 80 mg Coleon A wurden in 3 ml Trifluoressigsäure bei Z.-T. 70 h stehengelassen. Nach Eindampfen und Chromatographieren an SiO₂ (Chlorof.) wurde aus der rasch wandernden dunkelroten Hauptzone Anhydro-isocoleon A erhalten, das nach der Umkristallisation aus Aceton-Methylcyclohexan 40 mg Nadeln vom Smp. 196–197° ergab.

c) 150 mg Coleon A in 30 ml abs. Äther wurden unter Eiskühlung und Rühren mit 15 ml konz. H_2SO_4 tropfenweise versetzt (30 Min.). Nach Zugabe von weiteren 5 ml Schwefelsäure wurde die nun rotviolette Lösung 60 Min. bei Z.-T. weitergerührt. Anschliessend wurde mit Eis und Wasser versetzt und mit Äther extrahiert. Die nach der üblichen Aufarbeitung erhaltene rote, kristalline Substanz wurde an SiO₂ durch Chromatographie gereinigt. Ausbeute 120 mg. Nach Umkristallisation aus Aceton-Methylcyclohexan und Hochvakuumsublimation Smp. 197,5–198°.

 $C_{20}H_{20}O_5$ (340,36) Ber. C 70,57 H 5,92% Gef. C 70,60 H 6,10%

Anhydro-isocoleon A lässt sich dünnschichtchromatographisch leicht vom Isocoleon A unterscheiden.

d) Anhydro-isocoleon-A-monomethyläther (XIVb): 50 mg XIVa wurden mit CH_2N_2 in Äther umgesetzt und an SiO₂ mit Benzol gereinigt. Aus der orangeroten Zone wurde der Methyläther als orangerote Substanz mit Smp. 149–150° erhalten. Zur Analyse wurde im liegenden Rohr bei 140–160°/10⁻⁵ Torr sublimiert.

C₂₁H₂₂O₅ (354,39) Ber. C 71,17 H 6,26 OCH₃ 8,75% Gef. C 71,13 H 5,93 OCH₃ 8,62%
c) Di-O-acetyl-anhydro-isocoleon A (XIVc): Hergestellt durch Acetylierung in Pyridin bei Z.-T. während 40 h. Übliche Aufarbeitung, Reinigung durch Chromatographieren an SiO₂ (Chlorof.) und Hochvakuumdestillation; nach NMR. ein Diacetat.

12. Ozonabbau \rightarrow HCHO von XIVa. – Ausführung an 100 mg wie unter 1. ergab 15 mg Formaldimedon. Aus Dihydroanhydro-isocoleon A (XIIIa) konnte kein Formaldimedon erhalten werden.

13. Isocoleon A (XII) aus Anhydro-isocoleon A (XIVa). – 200 mg Anhydro-isocoleon A wurden in 40 ml eiskalter konz. H_2SO_4 unter Rühren gelöst. Nach 75 Min. versetzte man mit viel Eis und extrahierte gründlich mit Chloroform. Nach üblicher Aufarbeitung und Chromatographie an SiO₂ (Chlorof.) wurde die Substanz aus der dunkelroten Hauptzone isoliert und durch Umkristallisation und Hochvakuumsublimation gereinigt. Rf auf Kieselgel (Chlorof.) 0,22; (Anhydroisocoleon A daneben hat Rf 0,70). Smp. 203–205°; $pK_{MCS}^* = 7,14$. Identisch mit dem direkt aus Coleon A erhaltenen Isocoleon.

Monomethyläther: Mit Diazomethan hergestellt. Umkristallisiert aus Methanol. Feine orange gefärbte Nädelchen, Smp. 152–158°.

 $C_{21}H_{24}O_6$ (372,40) Ber. C 67,73 H 6,50 OCH₃ 8,33% Gef. C 67,70 H 6,85 OCH₃ 8,25% Löslich in 1N NaOH mit rotvioletter Farbe.

Tri-O-acetylderivat XIIa: Mit Pyridinmethode, 24 h bei Z.-T. hergestellt. Reinigung durch Chromatographie an SiO₂ (Chlorof.). Rasch wandernde orangegelbe Zone. Reinigung durch Hochvakuumdestillation.

14. Dihydroanhydro-isocoleon A (XIIIa) durch Hydrierung des Anhydro-isocoleons A. – 340 mg Anhydro-isocoleon A (XIVa) in 60 ml Toluol wurden mit 400 mg Pd/BaSO₄ 10-proz. reduziert. Innert 2 h wurden 2 Mol.-Äq. H₂ absorbiert. Nach üblicher Aufarbeitung unter Rückoxydation mit Ag₂O wurde an Kieselgel mit Chloroform chromatographiert. Aus der dunkelroten Hauptzone wurde nach Elution mit Äther, Umkristallisation aus Methylcyclohexan und Hochvakuumsublimation 300 mg Dihydroanhydro-isocoleon A (XIIIa) vom Smp. 193–193,5° erhalten, das mit dem früher erhaltenen Präparat identisch war. $pK_{MCS}^* = 6,82$.

 $C_{20}H_{22}O_5$ (342,38) Ber. C 70,16 H 6,48% Gef. C 70,31 H 6,48%

Di-O-acetylderivat XIIIc: Nach der Pyridinmethode bei Z.-T. (20 h) hergestellt; Reinigung durch Chromatographie an Kieselgel (Chlorof.); aus der orangegelben Zone durch Elution erhalten, Ausbeute 2,14 g aus 1,9 g XIIIa.

15. Anhydrid XV. – 100 mg Anhydro-isocoleon A in 25 ml Methanol (MERCK, puriss.) wurden mit 5 ml 0,3 N methanolischer KOH-Lösung und 1 ml 30-proz. H_2O_2 (MERCK) ununterbrochen bei 48° geschüttelt. Zugaben von je 1 ml 30-proz. H_2O_2 nach 30 Min., 1, 3, 4 und 5 h. Nach 6 h wurden noch 2 ml H_2O_2 und 5 ml 0,3 N KOH-Lösung zugegeben. Nach $6^{1}/_{2}$ h war die Lösung nur noch schwach rot gefärbt, worauf die Oxydation unterbrochen wurde. Hierauf Zugabe von Wasser, Entfernung eines Teiles des Methanols im Vakuum, Extraktion mit Äther und Abtrennung der im Äther gelösten sauren Anteile durch Ausschütteln mit Hydrogencarbonat-lösung. Durch Ansäuern und Reextraktion wurden daraus die Phtalsäuren isoliert. Die aus 7 gleichgrossen Einzelansätzen stammenden Phtalsäuren wurden portionsweise im Vakuum (Kugelrohr, 140–150°/10-⁵ Torr) destilliert. Erhalten wurden 285 mg semikristallines Rohprodukt mit gut ausgeprägten UV.-Spektren (λ_{max} 251/267/290/343/357 nm). Zur Isolierung der Hauptsubstanz wurde aus Benzol-Äther (9:1) an SiO₂-Celite (14×190 mm) chromatographiert.

Reines Benzol, 10 ml, gab wenige mg Kristalle mit himmelblauer Fluoreszenz im UV., Benzol mit 10% Äther (solange, bis die grünliche Zone durchzulaufen beginnt) gab wenige mg Kristalle mit bläulichgrüner Fluoreszenz im UV. Elution mit weiteren Mengen desselben Gemisches, bis die im Tageslicht grünliche Zone eluiert war, gab 130 mg Öl, das im Vakuum durchkristallisierte und im UV. grünlichblau bis türkis fluoreszierte. Benzol mit 20% Äther gab die rötliche Zone mit wenigen mg nicht kristallisierendem Öl. Benzol mit 30% Äther eluierte noch Fraktionen, die teilweise kristallin waren, die aber nicht weiter untersucht wurden.

Die aus Zone 6 erhaltenen 130 mg grünlichen Kristalle wurden 5-6mal aus abs. Tetrahydrofuran-Petroläther umkristallisiert und jedesmal sorgfältig im Hochvakuum sublimiert. Smp. 143,5-144°; Ausbeute 60 mg.

16. Anhydrid XVI. – a) Durch Hydrierung von XV: 30 mg Substanz in 25 ml Toluol mit 60 mg 5-proz. Pd-BaSO₄ wurden bis zur Aufnahme von 1,05 Mol.-Äq. H₂ hydriert. Das nach Filtrieren und Eindampfen durch Hochvakuumsublimation gewonnene Anhydrid schmolz nach Umkristallisation aus Tetrahydrofuran-Petroläther bei 145,5–146°; farblose Nadeln.

C₁₅H₁₄O₅ (274,26) Ber. C 65,69 H 5,15 O 29,16% Gef. C 65,64 H 4,84 O 29,52%

b) Durch Abbau von XIIIa: 4×100 mg Dihydroanhydro-isocoleon A (XIIIa) wurden exakt wie unter 15. beschrieben oxydiert und aufgearbeitet. Die im SiO₂-Chromatogramm rasch wandernde Hauptzone mit blaugrüner Fluoreszenz im UV. wurde durch mehrfaches Umkristallisieren aus abs. Tetrahydrofuran-Petroläther und Umsublimieren im Hochvakuum rein erhalten. Farblose Nadeln, Smp. 145–146°. Die beiden Produkte zeigten identische UV., Nah-IR.-und NMR.-Spektren. C₁₅H₁₄O₅ (274,26) Ber. C 65,69 H 5,15% Gef. C 65,60 H 5,05%

Analoge Oxydationen an Coleon A führten ebenfalls zu Säuren mit der charakteristischen UV.-Absorption von substituierten Phtalsäuren, doch gelang keine Kristallisation einer Komponente.

17. Ozonabbau von XIIIc zu XXI. – 1 g Tri-O-acetyl-dihydroanhydro-isocoleon A (XIIIc) in 75 ml reinem Essigester wurde unter Eiskühlung ozoniert (100 Volt, $p = 0.2 \text{ kg} \cdot \text{cm}^{-2}$, Flowmeter 50). Ozonisiert wurde solange, bis sich in der angeschlossenen 20-proz. KJ-Lösung Jod ausschied. Es wurden insgesamt $951 O_3/O_2$ -Gemisch innert 130 Min. durchgeleitet. Hierauf wurde mit O₂ gespült und das Lösungsmittel bei 30° im Vakuum verdampft. Zum gelben Harz gab man anschliessend 70 ml Wasser, 2 g Zinkstaub, eine Spatelspitze Silbernitrat und etwas Hydrochinon zu und erhitzte das Gemisch 1 Std. auf dem Wasserbad. Hierauf wurde die Lösung filtriert und der Filterrückstand mit etwas Wasser und Toluol ausgewaschen. Die vereinigten Filtrate dampfte man im Vakuum auf ca. 50 ml ein. Nach Zugabe von 15 ml 2N NaOH wurde zur Verseifung der Ester 15 Min. auf dem Wasserbad erhitzt. Die tiefrote Lösung wurde mit 2n H_2SO_4 angesäuert (starker Geruch nach Buttersäure) und mit Chloroform ausgezogen. Nach üblicher Aufarbeitung wurde der erhaltene braunrote, kristalline Rückstand aus Chloroform an SiO₂ chromatographiert. Nach Entwickeln wies die Säule im wesentlichen 4 Zonen auf: zuoberst eine stark haftende braunrote Zone, darunter eine breite schwachrötliche Zone, dann die dunkelrote Hauptzone, zuunterst ein schmaler roter Ring. Durch Elution der Hauptzone erhielt man 400 mg kristallines Chinon, das aus Äthanol-Methylcyclohexan mehrmals umkristallisiert wurde. Zur Analyse wurde eine kleine Portion im liegenden Rohr im Hochvakuum sublimiert, $160-170^{\circ}/10^{-5}$ Torr. Orangerote Nadeln, Smp. 207-208°. Lösungsfarbe in 10% NaOH: rot; FeCl_a: grauviolett.

Tri-O-acetylderivat XXIa: Durch Acetylierung in Pyridin/Acetanhydrid bei Z.-T. während $3^{1}/_{2}$ h. Nach üblicher Aufarbeitung Chromatographie an SiO₂ (Chlorof.). Die aus der gelben Zone erhaltene Substanz wurde im Kugelrohr destilliert (130–140°/10⁻⁵ Torr) und aus Äthanol kristallisiert: hellgelbe Kristalle, Smp. 146,5–147,5°.

C₂₂H₂₂O₉ (430,40) Ber. C 61,39 H 5,15% Gef. C 61,87 H 5,27%

Dimethyläther XXIb: Durch Umsatz mit CH_2N_2 in Äther; Reinigung durch Chromatographie an SiO₂ (Chlorof.); orangerote Zone, Destillation im Hochvakuum (Kugelrohr), Umkristallisation aus Äther-Hexan. Smp. 60°.

 $\begin{array}{ccccccc} C_{18}H_{20}O_6 & \mbox{ Ber. C 65,05} & \mbox{ H 6,07} & \mbox{ OCH}_3 18,67\% \\ (332,34) & \mbox{ Gef. },, \ 64,84; \ 65,05 & \ ,, \ 6,25; \ 6,46 & \ ,, \ 18,12\% \end{array}$

Trimethyläther XXIc: Durch Methylierung in Aceton- K_2CO_3 -Dimethylsulfat (3-stdg. Kochen unter Rückfluss). Reinigung durch Destillation im liegenden Rohr (10⁻⁵ Torr, 140° Badtemp.) und Chromatographie an SiO₂ (Chlorof.). Orangegelbe Substanz, Öl. Ausbeute aus 380 mg XXI: 420 mg. Nach NMR. liegt der Trimethyläther vor.

18. Hydroxylacton XXIII. – 400 mg Coleon-A- γ -lacton VI wurden in 40 ml konz. H_2SO_4 in der Kälte gelöst und die Mischung bei Z.-T. 1 h geschüttelt. Dann Giessen auf Eis und Extraktion mit Chlorof. Nach üblicher Aufarbeitung Chromatographie an SiO₂ mit Chlorof.-Aceton 2:1. Es wurden beobachtet: (oben) braunrote, starkhaftende Hauptzone (XXIII), darunter grünlichgelbliche Zone (verworfen), orange gefärbte Zone (ebenfalls ein γ -Enollacton, nicht weiter untersucht), (unten) gelbe Zone (unverändertes Ausgangsmaterial, wenig). Die aus der Hauptzone isolierte Substanz kristallisierte aus Aceton-Methylcyclohexan in prachtvollen goldglänzenden Blättchen. Zur Analyse wurde im Vakuum sublimiert (170°/10⁻⁵ Torr): Orangegelbe Nadeln, Smp. 195°. Rf auf Kieselgel G mit Chlorof.-Aceton (2:1): 0,26; Coleon-A- γ -lacton: 0,79.

19. Dimethoxylacton XXIV. – Durch Umsatz von XXIII in Äther mit dest. ätherischer Diazomethanlösung im Überschuss. Nach kurzer Zeit Abdampfen des Lösungsmittels im Vakuum: roter kristalliner Rückstand. Chromatographie aus Chlorof. an SiO₂: rasch wandernde, orangerote Zone; Umkristallisation aus Hexan, Destillation im Hochvakuum. Orangerote Kristalle, Smp. 135,5–136°. C. H. O. Berg, C. 65,66 M. H. 6,51 M. O. C. H. 15,429/

$$\begin{array}{cccc} C_{22}H_{26}O_7 & \text{Ber. C } 65,66 & \text{H } 6,51 & \text{OCH}_3 \ 15,42\% \\ (402,43) & \text{Gef. } , 66,01; \ 65,05 & , 6,64; \ 6,54 & , 15,27\% \end{array}$$

20. Trimethoxylacton XXV. – Durch Methylierung von XXIV (1 g) in Aceton (150 ml) mit K_2CO_3 (10 g) und Dimethylsulfat (2×5 ml) während 20 h bei Z.-T. und darauf 2 h unter Rückfluss. Übliche Aufarbeitung und Chromatographie an SiO₂ mit Chlorof. Die aus der rasch wandernden gelben Hauptzone isolierte ölige Substanz (820 mg) wurde zur Analyse 2mal im liegenden Rohr destilliert (140–150°/10⁻⁵ Torr).

C₂₃H₂₈O₇ (416,45) Ber. C 66,33 H 6,78 OCH₃ 22,35% Gef. C 66,13 H 6,79 OCH₃ 18,20%

Das NMR. bestätigt die Abwesenheit des *peri*-OH und die Anwesenheit von 3 OCH₃-Gruppen (4,84|4,97 ppm; Integralverhältnis 1:2).

21. Permanganatoxydation des Lactons XXV: Tetracarbonsäure XXVI. – 400 mg Lacton XXV wurden in 100 ml $0.5 \times$ NaOH bei 100° unter Rühren mit kleinen Portionen von gepulvertem KMnO₄ versetzt. Nach 4 h blieb die Permanganatfarbe während 20 Min. bestehen; Verbrauch ca. 3 g. Nach Abkühlen und Ansäuern mit verd. H₂SO₄ wurde SO₂ bis zur Entfärbung eingeleitet. Nach Filtration und Eindampfen auf ca. 10 ml wurde die Lösung gründlich mit Äther und anschliessend Essigester extrahiert.

In gleicher Weise wurden weitere 380 mg Lacton XXV oxydiert. Die aus beiden Ansätzen durch Extraktion erhaltene rohe Tetracarbonsäure war farblos und kristallisiert (450 mg) und zeigte im UV. (konz. H_2SO_4): λ_{max} 250/350 nm; λ_{min} 228/315 nm. Reinigung durch Umfällung, Smp. ca. 210° (Zers.).

Tetramethylester XXVII: Durch Methylierung mit CH_2N_2 in Methanol-Äther. Reinigung durch Destillation im Kugelrohr bei 130–150°/10⁻⁵ Torr (farbloses Öl) und Chromatographie an Aluminiumoxid (MERCK) mit Chlorof. Die im UV. intensiv grün fluoreszierende, relativ rasch wandernde Hauptzone wurde redestilliert. NMR. (CDCl₃): 3,84 (s), 3,90 (s), 3,93 (s) ppm im Verhältnis 1:1:1; keine weiteren Signale; IR. (Chlorof.): 1770/1739 cm⁻¹; UV. (Äther): 215/230 nm.

Dianhydrid XXVIII: Durch Erhitzen von XXVI in überschüssigem Acetanhydrid unter Rückfluss und Sublimation des Eindampfrückstandes im Hochvakuum (160–180°/10⁻⁵ Torr); farblose, kristalline Substanz. Umkristallisation aus Aceton-Petroläther, Smp. 209–211°.

C₁₂H₆O₈ (278,17) Ber. C 51,81 H 2,17% Gef. C 52,53 H 2,38%

22. Indenoncarbonsäure XXXI. – 1,5 g Coleon A wurden in 300 ml 25-proz. oder 50-proz. KOH aq. 120 Min. unter Rückfluss erhitzt. Die anfänglich blutrote Lösung wurde bald braunrot. Nach Kühlen mit Eis wurde sie mit 10-proz. HCl angesäuert und mit Äther und Chloroform extrahiert. Nach üblicher Isolierung wurde die extrahierte Substanz in 5 Portionen im Kugelrohr bei 160–180°/10⁻⁵ Torr destilliert. Dann wurde aus Aceton-Methylcyclohexan umkristallisiert: 1,12 g XXXI vom Smp. 203–207° Zur Analyse wurde XXXI erneut an SiO₂ (Chlorof.) chromatographiert, dann mehrfach aus Methylcyclohexan umkristallisiert und im Hochvakuum sublimiert; hellrote Nadeln, Smp. 209–212°. – Die Reaktion tritt auch schon mit 5-proz. KOH, dann jedoch viel langsamer und mit geringerer Ausbeute ein. In besonderen Versuchen wurde der Einfluss des Durchleitens von O₂ oder N₂ während der Reaktion auf die Ausbeute untersucht. Die erhaltenen Produkte waren identisch, aber in den Versuchen mit O₂ war die Ausbeute etwas besser.

C ₂₀ H ₂₀ O ₅	Ber.	C 70,57	Н 5,92	O 23,50%
(340,36)	Gef.	,, 70,45	,, 5,99	,, 23,56%
	,,	,, 70,36; 70,11	,, 5,97; 5,84	,, 23,67%

Gef. MG. 307 (osmometrisch), Äq.-G. 352 (Titration); $pK_{MCS}^* = 4,25$.

Methyläther-methylester XXXIVa: Durch Umsatz von XXXI mit CH_2N_2 in Äther, Chromatographie an SiO₂ (Chlorof.; orangerote Hauptzone), Destillation im Hochvakuum (Sdp. 110–120°/10⁻⁵ Torr) und Umkristallisation aus Methylcyclohexan, orange gefärbte Kristalle, Smp. 100–101°; Rf auf Kieselgel G 0,64 (Chlorof.).

O-Acetylderivat XXXIVb: Durch Umsatz von XXXI in Pyridin/Ac₂O bei Z.-T., übliche Aufarbeitung und Chromatographie an SiO₂ (Chlorof.). Orangegelbe Zone, daraus amorphe gelbe Substanz. pK_{MCS}: ca. 4,8.

Indenoncarbonsäure $XXIX^{10}$): pK^{*}_{MCS} 4,40; Äq.-G. 277. Methylester XXX, durch Methylierung mit Diazomethan, Sdp. 80-100°/10⁻⁵ Torr.

Methyläther-methylester XXXVII: 250 mg XXXI in 50 ml reinem Toluol nahmen mit 250 mg Pd/BaSO₄ (10-proz.) innert 20 Min. 2 Mol. H₂ auf. Nach Filtration der hellgelben Lösung wurde mit Diazomethan im Überschuss methyliert. Nach Chromatographie des Methylesters an SiO₂ (Chlorof.) wurde die aus der roten Hauptzone erhaltene Substanz destilliert (160°/10⁻⁵ Torr). – NMR: u. a. 1,03 ppm (d) = Isopropyl-; keine Allylgruppe.

C₂₂H₂₈O₅ (372,44) Ber. C 70,94 H 7,58% Gef. C 70,90 H 7,57%

Methyläther-methylester XXXIX: Wird das Zwischenprodukt XXXVIII mit Diazomethan in Äther methyliert und der erhaltene Methyläther an Kieselgel (Chlorof.) chromatographiert, so wird der orange gefärbte Äther-ester XXXIX erhalten, Sdp. 150°/10⁻⁶ Torr.

C₂₂H₂₆O₆ (386,43) Ber. C 68,38 H 6,78% Gef. C 67,73 H 6,74%

O-Acetylderivat XL: Obiger Methyläther-methylester ergibt mit Pyridin-Acetanhydrid das orangegelbe Monoacetylderivat XL, Sdp. 140–150°/10⁻⁵ Torr.

C₂₄H₂₈O₇ (428,46) Ber. C 67,27 H 6,59% Gef. C 66,47 H 6,35%

23. Indenoncarbonsäure XXXVa. – 0,3 g Anhydro-isocoleon A in 50 ml 25- oder 50-proz. KOH wurde 2 h unter Rückfluss erhitzt. Nach der unter 22. beschriebenen Aufarbeitung und Chromatographic an SiO₂ (Chlorof.; rote Zone) und Hochvakuumdestillation erhielt man XXXVa als tiefrote Kristalle, Smp. nach wiederholter Umkristallisation aus Aceton-Methylcyclohexan 219–222°. p $K_{MCS}^* = 4,42$.

$$\mathrm{C_{20}H_{20}O_5}~(340,36) \qquad \mathrm{Ber.}~\mathrm{C}~70,57 \quad \mathrm{H}~5,92\% \qquad \mathrm{Gef.}~\mathrm{C}~70,24 \quad \mathrm{H}~6,08\%$$

Methoxymethylester XXXVb: Durch Umsatz mit CH_2N_2 in Äther und Chromatographie an SiO_2 (Chlorof.), Hochvakuumdestillation bei $110-120^{\circ}/10^{-5}$ Torr (Badtemp., Kugelrohr).

$$C_{22}H_{24}O_5$$
 (368,41) Ber. C 71,72 H 6,57% Gef. C 71,19 H 6,40%

24. Indenoncarbonsäure XXXVI. – 0,6 g Oxid Xb wurde in 150 ml 25-proz. KOH aq. während 2 h unter Rückfluss erhitzt. Nach üblicher Aufarbeitung (Entfernen einer blauvioletten Suspension durch Ätherextraktion der alkalischen Lösung) wurde das erhaltene Produkt an SiO₂-Celite mit Chlorof.-Aceton (30%) chromatographiert. Nach Umkristallisation des aus der Hauptzone erhaltenen Farbstoffes aus Methylenchlorid-Äther und Methanol-Benzol, feinste, orangerote Nadeln, Smp. 215–216° (Umwandlung bei 150–155°). $pK_{MCS}^* = 4,1$: Äq.-G. 385.

C ₂₀ H ₂₂ O ₇	Ber. C 64,16	Н 5,92	O 29,92%
(392,39)	Gef. ,, 64,35; 63,86	,, 5,88; 5,96	,, 29,65%

25. Einige Farbteste. – 1–3 mg Substanz in 0,5 ml Essigsäureanhydrid lösen, mit Pyroboracetat (verdünnte Lösung in Acetanhydrid) versetzen:

Coleon A (I)	tief violettrot, stabil
Dihydrocoleon A (III)	tief violettrot, stabil
VI	hellrot \rightarrow langsam rein violettrot
VII	hellrot \rightarrow dunkelrot \rightarrow langsam intensiv violettrot
Xb	$rot \rightarrow rasch rotviolett \rightarrow violettrot$
XII	dunkelrot \rightarrow violettrot \rightarrow rasch schmutzigbraunrot
XIIIa	$dunkelrot \rightarrow violettrot \rightarrow schmutzigbraunrot$
XIIIb	dunkelrot \rightarrow violettrot (sehr rein)
XIVa	dunkelrot \rightarrow violettrot \rightarrow schmutzigweinrot \rightarrow schmutzigbraunrot \rightarrow
	bräunlich
XXI	hellrot \rightarrow langsam dunkelrot
XXIb	hellrot
XXIII	$\operatorname{hellrot} \rightarrow \operatorname{dunkelrot} \rightarrow \operatorname{violettrot}$
XXIV	hellrot
XXXI	$hellgelb \rightarrow schmutzigbräunlich \rightarrow rötlichbraun$
XXXVa	grünlich \rightarrow bräunlich
XXXVI	$\operatorname{grünlich} \rightarrow \operatorname{hellgelb}$

26. Coleus-Substanzen C und D. – 27 g epiphasische Stoffe, die bei der Extraktion der Coleone mit 90-proz. Methanol in der Benzol-Petroläther-Phase verblieben waren, wurden an 750 ml Aluminiumoxid (MERCK) mit Benzol und steigenden Mengen Äther chromatographiert. Aufgefangen wurden Fraktionen zu 250 ml. Die ersten 6 Fraktionen mit reinem Benzol enthielten wachsartige Substanzen. Die nächsten 7 Fraktionen (2, 5, 10, 20, 50, 50% Äther) enthielten positiv drehende Substanzen (→ Substanz D), die darauf folgenden Fraktionen 16, 17, 18, mit 100% Äther eluiert, enthielten die Substanz C. Spätere Fraktionen wurden noch nicht untersucht.

Die 7 Fraktionen mit der Substanz D wurden erneut an 120 g Aluminiumoxid (MERCK) mit Benzol und 5% Äther chromatographiert. Aufgefangen wurden Fraktionen zu 10 ml. Aus den stärkst rechtsdrehenden Fraktionen ($[\alpha]_D > + 80^\circ$ in Benzol), Fraktionen 47–57, wurde 0,44 g Substanz D isoliert. Smp. nach Umkristallisation aus Äthanol 174–175°; $[\alpha]_{2D}^{2D} = + 88^\circ$ (Benzol).

C ₃₀ H ₅₀ O	Ber. C 84,44	H 11,81	O 3,75%
(426,70)	Gef. ,, 84,31	,, 11,68	,, 4,04%
	,, ,, 84,26; 84,4	1 ,, 11,90; 11,9	8

Substanz C wurde ebenfalls aus Äthanol umkristallisiert: Smp. 139–140°; $[\alpha]_D^{25} = -33^{\circ}$ (Benzol). Destillierbar im liegenden Rohr bei 180–190°/10⁻³ Torr.

C ₃₀ H ₅₀ O	Ber. C 84,44	H 11,81	O 3,75%
(426,70)	Gef. ,, 84,15	,, 12,16	,, 3,99%
	,, ,, 83,99; 84,3	33 ,, 11,64; 11,97	,, 3,65%

ZUSAMMENFASSUNG

Für Coleon A, das Hauptpigment aus den Blättern von Coleus igniarius SCHWEINF. (Labiatae), wird die Struktur I bewiesen. Es wird die Vermutung ausgesprochen, dass es biogenetisch ein hoch oxydiertes Derivat eines 1,10-seco-Diterpens der Abietanreihe vorstellt. Zur Festlegung der relativen Substituentenanordnung im Chinonteil hat sich die Methode der Überführung in Indenoncarbonsäuren als geeignet erwiesen. Neben Coleon A und B sind die optisch aktiven Coleus-Substanzen C und D, beide $C_{30}H_{50}O$, isoliert worden. Es wird auf die Tatsache hingewiesen, dass oxydierte und modifizierte Diterpene bisher vor allem in Vertretern der Labiaten aufgefunden worden sind.

Organisch-Chemisches Institut der Universität Zürich, Zürich

LITERATURVERZEICHNIS

- [1] C. H. EUGSTER, H.-P.KÜNG, H. KÜHNIS & P. KARRER, Helv. 46, 530 (1963).
- [2] Nach R. ENTSCHEL, C. H. EUGSTER & P. KARRER, Helv. 39, 1263 (1956), ausgeführt.
- [3] O. DIMROTH & T. FAUST, Ber. deutsch chem. Ges. 54, 3020 (1921); Liebigs Ann. Chem. 446, 97, 123 (1925).
- [4] Vgl. Fig. 3 in [1] (S. 534).
- [5] Zitiert von H. B. HENBEST, E. R. H. JONES & T. C. OWEN, J. chem. Soc. 1957, 4909.
- [6] D. H. R. BARTON, H. T. CHEUNG, A. D. CROSS, L. M. JACKMAN & M. MARTIN-SMITH, J. chem. Soc. 1961, 5061.
- [7] E. BULLOCK, J. C. ROBERTS & J. G. UNDERWOOD, J. chem. Soc. 1962, 4179.
- [8] T. ASAO, G. BÜCHI, M. M. ABDEL-KADER, S. B. CHANG, E. L. WICK & G. N. WOGAN, J. Amer. chem. Soc. 85, 1706 (1963).
- [9] C. H. EUGSTER & P. KUSER, Chimia 18, 358 (1964).
- [10] R. G. COOKE, Privatmitteilung. Wir danken Herrn Dr. R. G. COOKE, Melbourne, auch hier für die freundliche Mitteilung dieser Daten.
- [11] C. H. EUGSTER & K. ALLNER, Helv. 45, 1750 (1962).
- [12] A. v. WACEK, H. O. EPPINGER & A. v. BÉZARD, Ber. deutsch. chem. Ges. 73, 521 (1940).
- [13] E. SPÄTH & W. GRUBER, Ber. deutsch. chem. Ges. 74, 1492 (1941).
- [14] P. BOSSHARD, S. FUMAGALLI, R. GOOD, W. TRUEB, W. V. PHILIPSBORN & C. H. EUGSTER, Helv. 47, 769 (1964); C. H. EUGSTER & P. BOSSHARD, *ibid.* 46, 841 (1963).
- [15] J. H. LISTER, C. H. EUGSTER & P. KARRER, Helv. 38, 215 (1955).
- [16] A. NIGGLI & M. FEHLMANN, Helv. 48, 305 (1965).
- [17] H. SCHMID & A. EBNÖTHER, Helv. 33, 1751 (1950); J. H. BIRKINSHAW, H. RAISTRICK, D. J. Ross & C. E. STICKINGS, Biochem. J. 50, 610 (1952).
- [18] R. G. COOKE & T. C. SOMERS, Nature 165, 314 (1950); Austral. J. Chemistry 3, 487 (1950).
- [19] O. E. EDWARDS, F. FENIAK & M. Los, Canad. J. Chemistry 40, 1540 (1962).
- [20] C. H. BRIESKORN, A. FUCHS, J. B-SON BREDENBERG, J. D. MCCHESNEY & E. WENKERT, J. organ. Chemistry 29, 2293 (1964).
- [21] M. M. JANOT & P. POTIER, Ann. pharmac. franç. 22, 387 (1964).
- [22] Vgl. eine spätere Mitteilung mit J. SCARPA.
- [23] T. KUBOTA et al., Tetrahedron Letters 20, 1243 (1964).
- [24] Y. OKUMURA, H. KAKISAWA, M. KATO & Y. HIRATA, Bull. chem. Soc. Japan 34, 895 (1961).
- [25] H. LINDE, Helv. 47, 1234 (1964); C. H. BRIESKORN & A. FUCHS, Chem. Ber. 95, 3034 (1962); siehe auch [20].
- [26] L. H. BRIGGS, R. C. CAMBIE, R. N. SEELYE & A. D. WARTH, Tetrahedron 7, 270 (1959).